The entire subject of Water Supply and Sanitary Engineering including Environmental Engineering also known as Public Health Engineering is divided into three parts:

1. Water Supply Engineering
2. Sanitary Engineering

The first part deals with the fundamentals of Water Supply Engineering. It discusses the whole science of water supply engineering relating to the quantity and quality of water, sources of water supply, pumps for water supply projects, treatment of water, coagulation of water, filtration of water, disinfection of water, water softening, collection and conveyance of water, distribution system of water, pipe appurtenances, water pollution control, water management, radioactivity and water supplies, etc.

The second part of the book deals with the fundamentals of Sanitary Engineering. It discusses the topics such as collection and conveyance of refuse, waste water, quantity and quality of sewage, construction and design of sewers, sewer appurtenances, sewage pumps, house drainage, natural methods of sewage disposal, primary treatment of sewage, filtration of sewage (secondary treatment), activated sludge process, sludge treatment and disposal, miscellaneous methods of sewage treatment, miscellaneous topics of sanitary engineering, etc.

The third part deals with the fundamentals of Environmental Engineering. It discusses the topics such as environment, ecology and ecosystem, air pollution, noise pollution, natural resources and population, miscellaneous topics of environmental engineering and environmental legislation.

The Appendix A demonstrates the Typical Design of a Sewage Treatment Plant and Appendix B describes some of the Terminology of the subject.

The book in its 40 chapters and two appendices includes:

- 278 Self-explanatory and neat diagrams
- 152 Illustrative problems
- 68 Useful tables
- 690 Questions at the end of chapters.

The book should prove to be extremely useful to the Civil Engineering and also Environmental Engineering students preparing for the Degree Examinations of all the Indian Universities, Diploma Examinations conducted by various Boards of Technical Education, Certificate Courses as well as for the A.M.I.E., U.P.S.C., G.A.T.E., I.E.S. and other similar competitive and professional examinations. It should also prove of interest to the practising professionals.
PART I: WATER SUPPLY ENGINEERING

Chapter 1: INTRODUCTION
1.1 General
1.2 Need to protect water supplies
1.3 Water supply schemes
1.4 Project drawings
1.5 Report of water supply scheme/project
1.6 Importance of water supply project
1.7 Layout of water supply project

QUESTIONS 1

Chapter 2: QUANTITY OF WATER
2.1 Data to be collected
2.2 Rate of demand
2.3 Factors affecting rate of demand
2.4 Measurement of water
2.5 Variations in rate of demand
2.6 Effects of variations on design
2.7 Water requirements for buildings other than residences
2.8 Design period
2.9 Summary

QUESTIONS 2

Chapter 3: SOURCES OF WATER SUPPLY
3.1 General
3.2 Surface runoff
3.3 Precipitation
3.4 Measurement of rainfall
3.5 Rainfall
3.6 Choice of source of water supply scheme
3.7 Types of sources for water supply schemes
3.8 Surface sources for water supply schemes
3.9 Salient features of reservoir design
3.10 Underground sources for water supply schemes
3.11 Forms of underground sources
3.12 Classification of wells
3.13 Types of well construction
3.14 Yield of a well
3.15 Specific capacity of a well
3.16 Tests for yield of a well
3.17 Spacing of wells
3.18 Sanitary protection of wells
3.19 Summary
3.20 Typical problems

QUESTIONS 3

Chapter 4: PUMPS FOR WATER SUPPLY PROJECT
4.1 Necessity of pumps
4.2 Choice of type of pumps
4.3 Types of pumps
4.4 Power for pumps
4.5 Design of pumps
4.6 Rising main
4.7 Typical Problems

QUESTIONS 4

Chapter 5: QUALITY OF WATER
5.1 Meaning of pure water
5.2 Reasons for the analysis of water
5.3 Impurities in water
5.4 Analysis of water
5.5 Physical tests
5.6 Chemical tests
5.7 Bacteriological tests
5.8 Maintenance of purity of waters
5.9 Water-borne diseases
5.10 Suitability of water for trade purposes:
5.11 Water for swimming pools
5.12 Drinking water standards

QUESTIONS 5

Chapter 6: TREATMENT OF WATER (SCREENS, PRE-SEDIMENTATION AND SEDIMENTATION TANKS)
6.1 General
6.2 Screens
6.3 Pre-sedimentation
6.4 Sedimentation tanks
6.4-1 Purpose and location
6.4-2 Theory of sedimentation
6.4-3 Types of sedimentation tanks
6.4-4 Design aspects of continuous

QUESTIONS 6

Chapter 7: COAGULATION OF WATER
7.1 Purpose
7.2 Principle of coagulation
7.3 Flocculation
7.4 Usual coagulants
7.5 Feeding the coagulants
7.6 Mixing devices
7.7 Jar test

QUESTIONS 7

Chapter 8: FILTRATION OF WATER
8.1 General
8.2 Theory of filtration
8.3 Filter sand
8.4 Classification of filters
8.4-1 Slow sand filters
8.4-2 Gravity type rapid sand filters
8.4-3 Pressure type rapid sand filters
8.5 Comparison between slow sand filters and gravity type rapid sand filters
8.6 Double filtration

QUESTIONS 8

Chapter 9: DISINFECTION OF WATER
9.1 Necessity for disinfection of water
9.2 Theory of disinfection
9.3 Minor methods of disinfection
9.4 Uses of ULTRA VIOLET–UV system
9.5 Chlorination
9.6 Properties of chlorine
9.7 Action of chlorine
9.8 Application of chlorine
9.9 Forms of chlorination
9.10 Tests for chlorine
9.11 Chlorine dioxide

QUESTIONS 9

Chapter 10: WATER SOFTENING
10.1 Purpose of water softening
10.2 Types of hardness
10.3 Removal of temporary hardness
10.4 Removal of permanent hardness
10.5 Lime-soda process
10.6 Zeolite process
10.7 Demineralisation process
10.8 Reverse osmosis

QUESTIONS 10

Chapter 11: MISCELLANEOUS METHODS OF WATER TREATMENT
11.1 General
11.2 Colour, odour and taste removal
11.3 Iron and manganese removal
11.4 Fluoridation

QUESTIONS 11

Chapter 12: COLLECTION AND CONVEYANCE OF WATER
12.1 Meaning

COLLECTION OF WATER
12.2 Intakes
Chapter 12

12-3. Design of intakes
12-4. Design procedure for intakes
12-5. Types of intakes
12-6. Intake towers

CONVEYANCE OF WATER
12-7. Conveyance of water
12-8. Pipes
12-9. Types of Pipes according to material used
12-10. Pipe corrosion
12-11. Effects of pipe corrosion
12-12. Theories of pipe corrosion
12-13. Prevention of pipe corrosion
12-14. Laying of water supply pipes
12-15. Hydraulic testing of supply pipes

Chapter 13

DISTRIBUTION SYSTEM OF WATER
13-1. General considerations
13-2. Methods of distribution of water
13-3. Service reservoirs
13-4. Systems of supply of water
13-5. Methods of layout of distribution pipes
13-6. Wastage of water
13-7. Water waste surveys
13-8. Permissible wastage of water
13-9. Preventive measures
13-10. Water waste tests
13-11. Maintenance of distribution system

Chapter 14

PIPE APPURTEANCES
14-1. Necessity
14-2. Air valves
14-3. Bib cocks
14-4. Fire hydrants
14-5. Reflux valves
14-6. Relief valves
14-7. Sluice valves
14-8. Scour valves
14-9. Stop cocks
14-10. Water meters

Chapter 15

WATER POLLUTION CONTROL AND WATER MANAGEMENT
15-1. Meaning of the term
15-2. Sources of water pollution
15-3. Types of water pollution
15-4. Preventive measures
15-5. Conclusion
15-6. Water management
15-7. Measures for re-shaping local water balance
15-8. Use and conservation of water resources

Chapter 16

RADIOACTIVITY AND WATER SUPPLIES
16-1. Radioactivity
16-2. Effects of radiation
16-3. Radioactive sources
16-4. Disposal of radioactive wastes
16-5. Radioactivity of water
16-6. Measurement of radioactivity
16-7. Effect of treatments on water
16-8. Recommended methods
16-9. Conclusion

Chapter 17

SANITARY ENGINEERING – AN INTRODUCTION
17-1. General
17-2. Purpose of sanitation
17-3. Principles of sanitation
17-4. Sanitary projects

17-5. Sanitary project drawings
17-6. Report for sanitary project
17-7. Site for sewage treatment works
17-8. Design aspects for sewage treatment plant 298
17-9. Some definitions

Chapter 18

COLLECTION AND CONVEYANCE OF REFUSE (WASTE WATER)
18-1. General
18-2. Methods of carrying refuse
18-3. Systems of sewerage
18-4. Favourable Conditions for sewerage
18-5. Patterns of refuse collection

Chapter 19

WASTE WATER
19-1. General
19-2. Standards for disposal of waste water
19-3. Waste water treatment
19-4. Primary waste water treatment
19-5. Secondary waste water treatment
19-5-1. Biological treatment units
19-5-2. Secondary clarifier
19-5-3. Sludge digester
19-5-4. Sludge drying beds
19-6. Oxidation ponds
19-7. Tertiary waste water treatment
19-8. Disposal of waste water
19-9. Reuses of waste water

Chapter 20

QUANTITY OF SEWAGE
20-1. General
20-2. Dry weather flow
20-3. Storm water

Chapter 21

CONSTRUCTION OF SEWERS
21-1. General
21-2. Materials for sewers
21-3. Materials used for sewers
21-4. Shapes of sewers
21-5. Joints in sewers
21-6. Laying and testing of sewers
21-7. Ventilation of sewers
21-8. Methods of ventilation of sewers
21-9. Cleaning and maintenance of sewers
21-10. Surface drains

Chapter 22

DESIGN OF SEWERS
22-1. General approach
22-2. Minimum and maximum velocities (Self-cleansing and non-scouring velocities)
22-3. Hydraulic formulas for design of sewers
22-4. Sizes of sewers
22-5. Time of concentration
22-6. Design procedure
22-7. Variation in flow and velocities
22-8. Typical Problems of design of sewers

Chapter 23

SEWER APPURTEANCES
23-1. Meaning of the term
23-2. Catch basins or catch pits
23-3. Clean-outs
23-4. Drop manholes
23-5. Flushing tanks
23-6. Grease and oil traps
23-7. Inlets
23-8. Inverted siphons
23-9. Lampholes
23-10. Manholes
23-11. Storm water regulators

Chapter 24

PART II : SANITARY ENGINEERING

Chapter 25
<table>
<thead>
<tr>
<th>Chapter 24</th>
<th>SEWAGE PUMPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-1.</td>
<td>Necessity of pumps</td>
</tr>
<tr>
<td>24-2.</td>
<td>Pumping of sewage</td>
</tr>
<tr>
<td>24-3.</td>
<td>Pumping stations</td>
</tr>
<tr>
<td>24-4.</td>
<td>Requirements of a pumping station</td>
</tr>
<tr>
<td>24-5.</td>
<td>Types of sewage pumps</td>
</tr>
<tr>
<td>24-6.</td>
<td>Power for pumps</td>
</tr>
<tr>
<td>24-7.</td>
<td>Horse-power of pumps</td>
</tr>
</tbody>
</table>

QUESTIONS 24

<table>
<thead>
<tr>
<th>Chapter 25</th>
<th>HOUSE DRAINAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-1.</td>
<td>Meaning of the term</td>
</tr>
<tr>
<td>25-2.</td>
<td>Principles of house drainage</td>
</tr>
<tr>
<td>25-3.</td>
<td>Traps</td>
</tr>
<tr>
<td>25-4.</td>
<td>Some definitions</td>
</tr>
<tr>
<td>25-5.</td>
<td>Sanitary fittings</td>
</tr>
<tr>
<td>25-6.</td>
<td>Systems of plumbing</td>
</tr>
<tr>
<td>25-7.</td>
<td>Drainage plans of buildings</td>
</tr>
<tr>
<td>25-8.</td>
<td>Testing of drains and pipes</td>
</tr>
<tr>
<td>25-9.</td>
<td>Maintenance of house drainage system</td>
</tr>
</tbody>
</table>

QUESTIONS 25

<table>
<thead>
<tr>
<th>Chapter 26</th>
<th>QUALITY OF SEWAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-1.</td>
<td>General</td>
</tr>
<tr>
<td>26-2.</td>
<td>Properties of sewage</td>
</tr>
<tr>
<td>26-2-1.</td>
<td>Physical properties</td>
</tr>
<tr>
<td>26-2-2.</td>
<td>Chemical properties</td>
</tr>
<tr>
<td>26-2-3.</td>
<td>Biological properties</td>
</tr>
<tr>
<td>26-3.</td>
<td>Cycles of decomposition</td>
</tr>
<tr>
<td>26-4.</td>
<td>Analysis of sewage</td>
</tr>
<tr>
<td>26-5.</td>
<td>Physical tests</td>
</tr>
<tr>
<td>26-6.</td>
<td>Chemical tests</td>
</tr>
<tr>
<td>26-6-1.</td>
<td>Chlorine</td>
</tr>
<tr>
<td>26-6-2.</td>
<td>Fats, greases and oils</td>
</tr>
<tr>
<td>26-6-3.</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>26-6-4.</td>
<td>Oxygen</td>
</tr>
<tr>
<td>26-6-5.</td>
<td>pH value</td>
</tr>
<tr>
<td>26-6-6.</td>
<td>Total solids</td>
</tr>
<tr>
<td>26-7.</td>
<td>Bacteriological tests</td>
</tr>
<tr>
<td>26-8.</td>
<td>Relative stability</td>
</tr>
<tr>
<td>26-9.</td>
<td>Population equivalent</td>
</tr>
</tbody>
</table>

QUESTIONS 26

<table>
<thead>
<tr>
<th>Chapter 27</th>
<th>NATURAL METHODS OF SEWAGE DISPOSAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>27-1.</td>
<td>General</td>
</tr>
<tr>
<td>27-2.</td>
<td>Disposal by dilution</td>
</tr>
<tr>
<td>27-3.</td>
<td>Self-purification of natural waters</td>
</tr>
<tr>
<td>27-4.</td>
<td>Disposal by land treatment</td>
</tr>
<tr>
<td>27-5.</td>
<td>Sewage sickness</td>
</tr>
</tbody>
</table>

QUESTIONS 27

<table>
<thead>
<tr>
<th>Chapter 28</th>
<th>PRIMARY TREATMENT OF SEWAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-1.</td>
<td>General</td>
</tr>
<tr>
<td>28-2.</td>
<td>Screens</td>
</tr>
<tr>
<td>28-3.</td>
<td>Grit chambers</td>
</tr>
<tr>
<td>28-4.</td>
<td>Detritus tanks</td>
</tr>
<tr>
<td>28-5.</td>
<td>Skimming tanks</td>
</tr>
<tr>
<td>28-6.</td>
<td>Plain sedimentation tanks</td>
</tr>
<tr>
<td>28-7.</td>
<td>Primary clarifiers</td>
</tr>
<tr>
<td>28-8.</td>
<td>Secondary clarifiers</td>
</tr>
<tr>
<td>28-9.</td>
<td>Coagulation of sewage</td>
</tr>
</tbody>
</table>

QUESTIONS 28

<table>
<thead>
<tr>
<th>Chapter 29</th>
<th>FILTRATION OF SEWAGE (SECONDARY TREATMENT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29-1.</td>
<td>Secondary treatment</td>
</tr>
<tr>
<td>29-2.</td>
<td>Filters</td>
</tr>
<tr>
<td>29-3.</td>
<td>Contact beds</td>
</tr>
<tr>
<td>29-4.</td>
<td>Intermittent sand filters</td>
</tr>
<tr>
<td>29-5.</td>
<td>Trickling filters</td>
</tr>
<tr>
<td>29-5-1.</td>
<td>Standard rate trickling filters</td>
</tr>
<tr>
<td>29-5-2.</td>
<td>High rate or high capacity trickling filters</td>
</tr>
<tr>
<td>29-6.</td>
<td>Miscellaneous filters</td>
</tr>
</tbody>
</table>

QUESTIONS 29

<table>
<thead>
<tr>
<th>Chapter 30</th>
<th>ACTIVATED SLUDGE PROCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>30-1.</td>
<td>Meaning of the term</td>
</tr>
<tr>
<td>30-2.</td>
<td>Action of activated sludge</td>
</tr>
<tr>
<td>30-3.</td>
<td>Flow diagram</td>
</tr>
<tr>
<td>30-4.</td>
<td>Methods of aeration</td>
</tr>
<tr>
<td>30-5.</td>
<td>Diffused air aeration</td>
</tr>
<tr>
<td>30-6.</td>
<td>Mechanical aeration</td>
</tr>
<tr>
<td>30-7.</td>
<td>Combination of diffused air aeration and mechanical aeration</td>
</tr>
<tr>
<td>30-8.</td>
<td>Sludge bulking</td>
</tr>
<tr>
<td>30-9.</td>
<td>Accumulation of volatile suspended solids</td>
</tr>
<tr>
<td>30-10.</td>
<td>Sludge volume index</td>
</tr>
<tr>
<td>30-11.</td>
<td>Sludge density index</td>
</tr>
<tr>
<td>30-12.</td>
<td>Step aeration</td>
</tr>
<tr>
<td>30-13.</td>
<td>Tapered aeration</td>
</tr>
<tr>
<td>30-14.</td>
<td>Extended aeration</td>
</tr>
<tr>
<td>30-15.</td>
<td>Contact stabilization</td>
</tr>
<tr>
<td>30-16.</td>
<td>Complete mix process</td>
</tr>
<tr>
<td>30-17.</td>
<td>Oxidation ditch</td>
</tr>
<tr>
<td>30-18.</td>
<td>Advantages of activated sludge process</td>
</tr>
<tr>
<td>30-19.</td>
<td>Disadvantages of activated sludge process</td>
</tr>
<tr>
<td>30-20.</td>
<td>Activated sludge process versus trickling filters</td>
</tr>
</tbody>
</table>

QUESTIONS 30

<table>
<thead>
<tr>
<th>Chapter 31</th>
<th>SLUDGE TREATMENT AND DISPOSAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-1.</td>
<td>Necessity</td>
</tr>
<tr>
<td>31-2.</td>
<td>Quantity of sludge</td>
</tr>
<tr>
<td>31-3.</td>
<td>Sludge treatment</td>
</tr>
<tr>
<td>31-3-1.</td>
<td>Sludge thickening</td>
</tr>
<tr>
<td>31-3-2.</td>
<td>Sludge digestion</td>
</tr>
<tr>
<td>31-3-3.</td>
<td>Sludge thickening</td>
</tr>
<tr>
<td>31-3-4.</td>
<td>Sludge conditioning</td>
</tr>
<tr>
<td>31-3-5.</td>
<td>Sludge conditioning</td>
</tr>
<tr>
<td>31-3-6.</td>
<td>Sludge dewatering</td>
</tr>
<tr>
<td>31-4.</td>
<td>Sludge gas</td>
</tr>
<tr>
<td>31-5.</td>
<td>Sludge digestion tanks</td>
</tr>
<tr>
<td>31-6.</td>
<td>Capacity of sludge digestion tank</td>
</tr>
<tr>
<td>31-7.</td>
<td>Standard rate digestion</td>
</tr>
<tr>
<td>31-8.</td>
<td>High rate digestion</td>
</tr>
<tr>
<td>31-9.</td>
<td>Two-stage digestion</td>
</tr>
</tbody>
</table>

QUESTIONS 31

<table>
<thead>
<tr>
<th>Chapter 32</th>
<th>MISCELLANEOUS METHODS OF SEWAGE TREATMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>32-1.</td>
<td>General</td>
</tr>
<tr>
<td>32-2.</td>
<td>Cesspools</td>
</tr>
<tr>
<td>32-3.</td>
<td>Chlorination of sewage</td>
</tr>
<tr>
<td>32-4.</td>
<td>Imhoff tanks</td>
</tr>
<tr>
<td>32-5.</td>
<td>Oxidation ponds</td>
</tr>
<tr>
<td>32-6.</td>
<td>Septic tanks</td>
</tr>
<tr>
<td>32-7.</td>
<td>Treatment of industrial wastes</td>
</tr>
<tr>
<td>32-8.</td>
<td>Wastes from fertiliser factories</td>
</tr>
</tbody>
</table>

QUESTIONS 32

<table>
<thead>
<tr>
<th>Chapter 33</th>
<th>MISCELLANEOUS TOPICS OF SANITARY ENGINEERING</th>
</tr>
</thead>
<tbody>
<tr>
<td>33-1.</td>
<td>General</td>
</tr>
<tr>
<td>33-2.</td>
<td>Biogas</td>
</tr>
<tr>
<td>33-3.</td>
<td>Elutriation</td>
</tr>
<tr>
<td>33-4.</td>
<td>Garbage collection and removal</td>
</tr>
<tr>
<td>33-5.</td>
<td>Garbage disposal</td>
</tr>
<tr>
<td>33-6.</td>
<td>Micro-organisms</td>
</tr>
<tr>
<td>33-7.</td>
<td>Types of metabolism</td>
</tr>
<tr>
<td>33-8.</td>
<td>Divisions of micro-organisms</td>
</tr>
<tr>
<td>33-9.</td>
<td>Night soil disposal without water carriage</td>
</tr>
<tr>
<td>33-10.</td>
<td>Rural sanitation</td>
</tr>
<tr>
<td>33-11.</td>
<td>Rotating biocontactor (RBC)</td>
</tr>
</tbody>
</table>

QUESTIONS 33
PART III : ENVIRONMENTAL ENGINEERING

Chapter 34 ENVIRONMENT
34-1. Definition
34-2. Components of environment
34-3. Man-environment relationship
34-4. Impact of technology on the environment
34-5. Environmental degradation
34-6. Principle of payment by polluter
34-7. Biological amplification
34-8. Environmental health hazard
34-9. Incipient lethal level
34-10. Monitoring programme
34-11. World environment day (WED)
34-12. Environmental impact assessment (EIA)
34-13. Sustainable development
34-14. Environmental ethics
34-15. Code of ethics
34-16. Some terms

Chapter 35 ECOLOGY AND ECOSYSTEM
35-1. Introduction
35-2. Ecosystem
35-3. Classification of ecosystem
35-3-1. Artificial ecosystems
35-3-2. Natural ecosystems
35-4. Aspects of ecosystem
35-5. Components of ecosystem
35-6. Energy flow in ecosystem
35-7. Food chains and food webs
35-8. Ecological or eltonian pyramid
35-9. Endangered species
35-10. Biogeochemical cycles
35-11. Acclimatization

Chapter 36 AIR POLLUTION
36-1. General
36-2. Air pollution
36-3. Importance of air pollution
36-4. Composition of air
36-5. Necessity of ventilation
36-6. Quantity of air required
36-7. Aerosols
36-8. Smoke and fog
36-9. Dust, gas and vapour
36-10. Coning and fanning
36-11. Acid soot
36-12. Downwash
36-13. Green-house effect
36-14. Ozone layer
36-15. Consequences of green-house effect and ozone layer
36-16. Sources of air pollution
36-17. Air pollutants
36-18. Urban air pollution
36-19. Self-cleansing of atmosphere
36-20. Effects of air pollution
36-21. Acid rains
36-22. Control of air pollution
36-23. Some tragic incidences

Chapter 37 NOISE POLLUTION
37-1. General
37-2. Effects of noise
37-3. Threshold of hearing
37-4. Measurement of sound
37-5. Acoustic reflex
37-6. Acceptable noise levels
37-7. Types of noises
37-8. Control of noise pollution
37-9. Air pollution and noise pollution

Chapter 38 NATURAL RESOURCES AND POPULATION
38-1. Natural resources
38-2. Exploitation of natural resources
38-3. Major natural resources
38-3-1. Agricultural resources
38-3-2. Animal resources
38-3-3. Food resources
38-3-4. Forest resources
38-3-5. Land resources
38-3-6. Marine resources
38-3-7. Mineral resources
38-3-8. Soil resources
38-3-9. Wild life resources
38-3-10. Water resources
38-3-11. Energy resources
38-4. Renewable or non-conventional energy resources
38-4-1. Sun energy
38-4-2. Wind energy
38-4-3. Bio-energy
38-4-4. Geothermal energy
38-4-5. Oceanic energy
38-4-6. Tidal energy
38-4-7. Chemical energy
38-4-8. Hydrogen energy
38-4-9. Hydro energy
38-5. Conservation of natural resources
38-6. Population
38-7. Theories of population
38-8. Methods of population forecasts
38-9. Factors affecting estimated population
38-10. Population explosion
38-11. Population growth rate

Chapter 39 MISCELLANEOUS TOPICS OF ENVIRONMENTAL ENGINEERING
39-1. General
39-2. Bioremediation
39-3. Biodiversity
39-4. Gross domestic product and quality of life
39-5. Cadmium poisoning
39-6. Mercury poisoning
39-7. Trace metal poisoning
39-8. Eutrophication (water pollution)
39-9. Land pollution
39-10. Oil pollution
39-11. Thermal pollution and cooling tower
39-12. Half-life (radioactive pollution)
39-13. Fertilizers
39-14. Pesticides
39-15. Tragedy of commons

Chapter 40 ENVIRONMENTAL LEGISLATION
40-1. General
40-2. Prevalent environmental acts
40-3. Pollution Control Policy
40-4. Forests and Environment Department
40-5. Gujarat Pollution Control Board (GPCB)
40-6. Gujarat Environmental Management Institute (GEMI)
40-7. Gujarat Ecology Commission (GEC)
40-8. Gujarat Institute of Desert Ecology (GUIDE)

Appendix A TYPICAL DESIGN OF A SEWAGE TREATMENT PLANT
Appendix B TERMINOLOGY
BIBLIOGRAPHY
Index