RAILWAY, BRIDGE AND TUNNEL ENGINEERING

By Ketki B. Dalal (K. S. Rangwala)

Although the first edition of this book, Atlas of Railway Engineering, was published in 1995, it has been extensively revised, updated and reorganised. The subject-matter is characterized by comprehension as well as methodical and easy-to-follow style. This edition is enhanced by widening its coverage, adding, updating and rearranging its contents. It now includes the new subject of Bridge Engineering as well as Tunnelling and Ventilation in Tunnels. This edition is divided into three sections:

SECTION I: RAILWAY ENGINEERING

1. Introduction
2. Railway Track Gauges
3. Surveys and Alignment of Railway Lines
4. Railway Track, Traction and Stresses
5. Rails
6. Sleepers
7. Ballast
8. Track Fittings
9. Resistance to Traction
10. Points and Crossings
11. Railway Stations and Yards
12. Railways and Accident Safety
13. Construction and Drainage of Railway Track
14. Maintenance, Accidents and Safety
15. Railway Track, Traction and Stress

SECTION II: BRIDGE ENGINEERING

16. Introduction
17. Bridge Foundations
18. Sub-Structures
19. Classification of Bridges
20. Bridge Flooring
21. Bridge Bearings
22. Design of Bridges
23. Construction and Erection Methods of Bridge
24. Testing, Strengthening and Maintenance of Bridges

SECTION III: TUNNEL ENGINEERING

25. General Aspects of Tunnelling
26. Alignment of Tunnel
27. Shafts and Portals
28. Tunnelling in Hard Rock
29. Tunnelling in Soft Soil
30. Tunnel Boring Machine
31. New Austrian Tunneling Method (NATM)
32. Sequential Excavation Method
33. Lighting, Ventilation and Dust Control
34. Drainage in Tunnels
35. Safety in Tunnel Construction
36. Testing, Strengthening and Maintenance of Bridges

APPENDICES

1. Abbreviated Terms
2. GTU Examination Papers
3. Index

Salient features of this book are:

- 427 Self-explanatory and neatly drawn sketches;
- 84 Illustrative problems;
- 65 Important useful tables;
- 733 Typical questions at the end of the chapters.

The text-matter has been arranged systematically according to the curriculum developed by the Gujarat Technological University (G.T.U.) for the Sixth Semester students of Civil Engineering (Subject code: 2160603) and also it should prove to be extremely useful to the Civil Engineering students preparing for the Degree Examinations of all the Indian Universities. Diploma Examinations conducted by various Boards of Technical Education, Certificate Courses as well as for the A.M.I.E., U.P.S.C., G.A.T.E., I.E.S. and other similar competitive and professional examinations. It should also prove great of interest various Boards of Technical Education, Certificate Courses as well as for the A.M.I.E., U.P.S.C., G.A.T.E., preparing for the Degree Examinations of all the Indian Universities, Diploma Examinations conducted by

About the Book

This book aims at presenting the topics of Railway, Bridge and Tunnel Engineering written in a simple manner. The subject-matter is characterized by comprehension as well as methodical and easy-to-follow style. Four new chapters have been added. Plenty of new matter, numerous examples and figures have been added as per the latest syllabus of different universities of India. Aspects of Tunnelling

The Section I: Railway Engineering is well divided in to Fifteen chapters including Introduction, Railway Track Gauges, Surveys and Alignment of Railway Lines, Railway Track, Traction and Stresses, Rails, Sleepers, Ballast, Track Fittings, Geometric Design of A Track, Resistance to Traction, Points and Crossings, Railway Stations and Yards, Signalling and Interlocking, Construction and Drainage of Railway Track, Maintenance, Accidents and Safety.

The Section II: Bridge Engineering is well divided in to Nine chapters including Introduction, Bridge Foundations, Sub-Structures, Classification of Bridges, Bridge Flooring, Bridge Bearings, Design of Bridges, Construction and Erection Methods of Bridge, Testing, Strengthening and Maintenance of Bridges.

The Appendix I gives Abbreviated Terms and Appendix II gives six solved examination papers of GTU.
SECTION 1: RAILWAY ENGINEERING

CHAPTER 1 INTRODUCTION

1-1. Brief history of railways

1-2. Importance of railways
 (1) General
 (2) Characteristics of railways
 (3) Advantages of railways

1-3. Trends in modern railways

1-4. Monorail
 (1) General
 (2) Applications and advantages of monorails
 (3) Mumbai Monorail System
 (4) Monorail and Maglev

1-5. Trains of tomorrow (Maglev Trains)

1-6. Automatic train operation

1-7. Indian railways

1-8. Development of the Indian railway
 (1) The old guarantee system
 (2) State construction and ownership
 (3) The modified guarantee system
 (4) Nationalisation
 (5) Integration and regrouping

1-9. Tourism development in Indian Railways

1-10. Bot and bolt projects of indian railways

1-11. Organizational structure of Indian Railways

1-12. Public undertakings of indian railways

1-13. Classification of Indian Railways
 (1) Trunk routes
 (2) Main lines
 (3) Branch Lines

1-14. Achievements of Indian Railways

1-15. Future Plan Of Indian Railways

1-16. Training Institutions Of The Indian Railways

1-16-1. The Railway Staff College, Vadodara

1-16-2. Indian Railways Institute of Civil Engineering (IRICEN), Pune

1-16-3. Indian Railways Institute of Signal Engineering and Tele-communications (IRISET), Secunderabad

1-16-4. Indian Railways Institute of Mechanical and Electrical Engineering, Jamalpur

1-16-5. Institute for Signal and Civil Engineering Officers at South Lallaguda, Secunderabad

1-16-6. Indian Railways Institute of Electrical Engineering (IRIEEN), Nasik

1-16-7. Indian Railways Institute of Transport Management (IRITM), Lucknow

1-16-8. Jagjivan Ram Railway Protection Force Academy, Lucknow

1-16-9. Railway University, Vadodara

QUESTIONS 1

CHAPTER 2 RAILWAY TRACK GAUGES

2-1. Definition of gauge of track
2-2. Factors affecting the choice of a gauge
 (1) Traffic condition
 (2) Development of poor areas
 (3) Cost of track
 (4) Speed of movement
 (5) Nature of country
2-3. Types of gauges
 (1) Broad gauge
 (2) Standard gauge
 (3) Metre gauge
 (4) Narrow gauge
2-4. Uniformity in gauges
 (1) Problems caused by change of gauge or break of gauge
 (i) Difficulties to passengers
 (ii) Difficulties for sending goods
 (iii) Inefficient use of rolling stock
 (iv) Difficulty in war
 (v) Equipment at station
 (vi) Hindrance for future conversion
 (2) Advantages of uniform gauge

QUESTIONS 2

CHAPTER 3 SURVEYS AND ALIGNMENT OF RAILWAY LINES

3-1. Track alignment
3-2. Importance Of Track Alignment
3-3. Requirements Of An Ideal Alignment
 (1) Purpose of laying a new railway lines
 (2) Economic considerations
 (3) Safety and comfort
 (4) Speed
 (5) Integrated development
 (6) Aesthetic aspects

3-4. Railway surveys

3-4-1. Reconnaissance survey
 (1) Objects of reconnaissance survey
 (2) Importance of reconnaissance survey
 (3) Information gathered in reconnaissance survey
 (4) Factors to be kept in view during reconnaissance survey
 (5) Instruments for reconnaissance survey

3-4-2. Preliminary survey
 (1) Object of preliminary survey
 (2) Importance of preliminary survey
 (3) Work of preliminary survey
 (4) Instruments for preliminary survey

3-4-3. Location survey
 (1) Object of location survey
 (2) Importance of location survey
 (3) Work of location survey
 (4) Instruments for location survey

3-4-4. Railway Electrification Survey
 (1) Cost cum feasibility survey
 (2) Foot by foot survey

3-5. Project report and drawings
3-6. Construction of new lines
 Stage I
 Stage II
 Stage III

QUESTIONS 3

CHAPTER 4 RAILWAY TRACK, TRACTION AND STRESSES

4-1. Components of railway track or permanent way
 (1) Rails
 (2) Sleepers
 (3) Ballast
 (4) Sub ballast
 (5) Embankment
RAILWAY, BRIDGE AND TUNNEL ENGINEERING
DETAILED CONTENTS

4-2. Requirements of an ideal permanent way
4-3. Tractive effort of a locomotive
4-4. Track stresses
 (1) Elastic theory
 (2) Track modulus
 (3) Forces acting on the railway track
4-5. Stresses in rails
 (1) Lateral stresses
 (2) Longitudinal stresses
 (3) Contact shear stresses between rail and wheel
 (4) Extra stresses
4-6. Determining track stresses
 (1) Virtual wheel load
 (2) Relief of stress
 (3) Permissible stresses on a rail section
4-7. Stresses in sleepers
 (1) Types of stresses in sleepers
 (2) Factors depending stresses in sleepers
 (3) Loads due to stresses in sleepers
4-8. Stresses in ballast
4-9. PRESSURE on formation or subgrade

CHAPTER 5 RAILS
5-1. Functions or purposes of rails
5-2. Requirements of an ideal rail
5-3. Types of rails
 (1) Double headed (D.H.) rails
 (2) Bull headed (B.H.) rails
 (3) Flat footed (F.F.) rails
5-4. Steel for rails
 (1) Medium manganese steel
 (2) High manganese steel
 (3) Chromium steel
5-5. Weight of rails
 (1) Cost
 (2) Durability of track
 (3) Waste of power
5-6. Standard sections of rails
5-7. Marking on rails
5-8. Corrugated or roaring rails
 (1) Meaning
 (2) Causes
 (3) Occurrence
 (4) Effects
 (5) Types
 (6) Peculiar properties
 (7) Remedy
5-9. Corrosion of rails
 (1) Quality of rail
 (2) Surface treatment
5-10. Length of rail
5-11. Welding of rails
 (1) Theory
 (2) Purposes
 (3) Advantages of welding of rails
 (4) Methods of welding
5-12. Wear of rails
 (1) Wear of rails on top or head of rail
 (2) Wear of rails at ends of rails
 (3) Wear of rail on the sides of the head of rail
5-13. Methods to reduce wear of rails
 (1) Use of special alloy steel
 (2) Good maintenance of track
 (3) Reduction of expansion gap
 (4) Exchange of inner and outer rails on curves
 (5) Introducing check rails
 (6) Use of lubricating oil
 (7) Head hardened rails

5-14. Measuring wear of rails
5-15. Renewal of rails
 (1) Wear of rails
 (2) Use of heavier locomotives
 (3) Construction of branch lines
 (4) Bending of rails
5-16. Failure of rails or defects in rails
 (1) Crushed head
 (2) Transverse fissure
 (3) Split head
 (4) Horizontal fissure
 (5) Square or angular breaks
 (6) Coning of wheels
 (7) Hogged rails
 (8) Buckling
5-17. Creep of rails

5-17-1. Causes of creep
 (1) Brakes
 (2) Wave action or wave theory
 (3) Percussion theory
 (4) Changes in temperature
5-17-2. Factors determining magnitude of creep
 (1) Alignment of track
 (2) Gradient of track
 (3) Direction of motion of trains
 (4) Embankments
 (5) Weight and type of rail
5-17-3. Results of creep
5-17-4. Method of measuring the creep
5-17-5. Methods of correcting the creep
 (1) Pulling back of rails method
 (2) Use of creep anchors
 (3) Use of steel sleepers

QUESTIONS 5

CHAPTER 6 SLEEPERS
6-1. Functions of sleepers
6-2. Types of sleepers
 (1) Longitudinal sleepers
 (2) Transverse sleepers
6-3. Requirements of an ideal material for sleeper
6-4. Materials for cross-sleepers
6-4-1. Timber or wooden sleepers
 (1) General
 (2) Features of the wooden sleepers
 (3) Requirements of wooden sleepers on girder bridges (Bridge sleepers)
 (4) Composite sleeper index (C.S.I.)
 (5) Advantages of the timber sleepers
 (6) Disadvantages of the timber sleepers
6-4-2. Steel sleepers
 (1) Features of steel sleepers
 (2) Conditions applied to design the steel sleepers
 (3) Advantages of the steel sleepers
 (4) Disadvantages of the steel sleepers
6-4-3. Cast-iron (C.I.) sleepers
 (1) General
 (2) Details of C.I. pot or bowl sleeper and C.I. plate sleeper

 QUESTIONS 6
RAILWAY, BRIDGE AND TUNNEL ENGINEERING
DETAILED CONTENTS

(3) Types of C.I. plate sleepers
(4) Features of the cast-iron sleepers
(5) Advantages of the cast-iron sleepers
(6) Disadvantages of the cast-iron sleepers

6-4-4. Concrete sleepers
(1) General
(2) Features of concrete sleepers
(3) Advantages of concrete sleepers
(4) Disadvantages of concrete sleepers
(5) Types of concrete sleepers

6-5. Sleepers for turnout
6-6. Sleeper density
6-7. Spacing of sleepers
6-8. Typical examples on sleepers

CHAPTER 7 BALLAST
7-1. Functions of ballast
7-2. Requirements of an ideal material for ballast
7-3. Materials used as ballast or types of ballast
(1) Broken stone
(2) Gravel
(3) Ashes or cinders
(4) Sand
(5) Kankar
(6) Moorum
(7) Brickbats
(8) Selected earth
7-4. Size and quantity of ballast
7-5. Renewal or screening of ballast
7-6. Specifications for track ballast
(1) General Properties
(2) Physical Properties
(3) Size and gradation
(4) Shrinkage allowance

CHAPTER 8 TRACK FITTINGS
8-1. Rail joints
8-2. Avoidance of rail joints
8-3. Types of rail joints
(1) Types according to position of joints
(2) Types according to position of sleepers
8-4. Requirements of an ideal fastening
8-5. Fastenings for rails
8-6. Fish-plates
(1) Purpose
(2) Design of fish-plates
(3) Details
(4) Compound or junction fish-plates
(5) Failures of fish-plates
8-7. Spikes and bolts
8-7-1. Spikes
(1) Purpose of spikes
(2) Requirements of a good spike
(3) Types of spikes
8-7-2. Bolts
(1) Fang-bolts
(2) Hook-bolts or dog-bolts
(3) Fish-bolts
(4) Rag-bolts
8-8. Chairs and keys
8-9. Blocks
8-10. Bearing-plates

CHAPTER 9 GEOMETRIC DESIGN OF A TRACK
9-1. General
9-2. Necessity for geometric design of track
9-3. Objections to curvature of track
9-4. Radius and degree of curvature
9-5. Gradients
9-6. Types of curves
9-7. Transition curves
(1) Requirements of transition curve
(2) Forms of transition curve
(3) Length of transition curve
(4) Shift
9-8. Super-elevation or cant
(1) Frictional resistance
(2) Coning of wheels
(3) Body of the vehicle
(4) Weighted average
9-10. Speed of trains on curves
9-11. Cant Deficiency and Negative super-elevation
9-12. Cant Excess
9-13. Grade compensation on curves
9-14. Bending of rails on curves
9-15. Cutting of rails on curves
9-16. Widening of gauge on curves
9-17. Spirals for mountain railways
9-18. Switch-backs or zig-zag method
9-19. Rack railways
9-20. String-lining method of curves
9-21. Tilting train
(1) The Italian Pendolino
(2) The Spanish Talgo
(3) United aircraft turbo train
(4) Advanced passenger train
(5) X-2000
(6) Inter City Neigezug

CHAPTER 10 RESISTANCE TO TRACTION
10-1. Train resistances
(1) Resistance due to friction
(2) Resistance due to wave action or resistance dependent on speed
(3) Resistance due to curves
(4) Resistance due to gradients
(5) Resistance due to speed of the train
(6) Resistance due to starting and acceleration
10-2. Rolling stock
10-2-1. Locomotives
(1) Definition
(2) Types of locomotives
(3) Essential parts of a locomotive
RAILWAY, BRIDGE AND TUNNEL ENGINEERING
DETAILED CONTENTS

10-2-2. Coaches
(1) Earlier coaches
(2) Modern coaches
(3) Double decker coaches

10-2-3. Wagons
(1) Timber truck wagon
(2) Cattle wagon
(3) Oil tank wagon
(4) Petrol tank wagon
(5) Hopper wagon
(6) Powder wagon
(7) Well wagon
(8) Refrigerated wagon
(9) Special wagons

10-3. Train-brakes
(1) Compressed air brakes
(2) Vacuum brakes
(3) Axle-mounted brake
(4) Magnetic brakes

10-4. Dynamometer car
(1) General
(2) Mechanisms
(3) Functions
(4) Points to remember

QUESTIONS 10

CHAPTER 11 POINTS AND CROSSINGS

11-1. Purpose
11-2. Some definitions

11-3. Sleepers laid for points and crossings
(1) Through sleepers
(2) Interlaced sleepers

11-4. Steel for points and crossings

11-5. Switches
(1) Stub switch
(2) Split switch

11-6. Shapes of switches
(1) Undercut switches
(2) Straight cut switches
(3) Over-riding switches or composite switches

11-7. Length of stock rails and tongue rails

11-8. Heel divergence or heel clearance

11-9. Switch angle

11-10. Throw of switch

11-11. Crossings

11-12. Types of crossings
(1) Ordinary or acute crossing
(2) Double or obtuse crossing

11-13. Theoretical nose of crossing (T.N.C.) and actual nose of crossing (A.N.C.)

11-14. Crossing clearance

11-15. Crossing number

11-16. Crossing angle
(1) Right angle or Cole’s method
(2) Centre-line method
(3) Isosceles triangle method

11-17. Different types of leads and their calculations

11-18. Laying of points and crossings
(1) Where there is no traffic interruption as in case of a new turnout
(2) Under traffic where the line is available for a few hours only

11-19. Maintenance of points and crossings

11-20. Combinations of points and crossings

11-20-1. Cross-overs

11-20-2. Scissors cross-overs

11-20-3. Slips

11-20-4. Fixed point

11-20-5. Three throws

11-20-6. Tandems or double turnouts

11-20-7. Gathering lines or ladder tracks

11-20-8. Gauntlet tracks

11-20-9. Double junctions

QUESTIONS 11

CHAPTER 12 RAILWAY STATIONS AND YARDS

12-1. General

12-2. Definition of a station

12-3. Purposes of a railway station

12-4. Selection of site for a railway station

12-5. Facilities required at railway stations
(1) Public requirements
(2) Traffic requirements
(3) Requirements of locomotive department
(4) General requirements

12-6. Classification of stations

12-6-1. Operational classification
(1) Block stations
(2) Non-block or D class stations
(3) Special class stations

12-7. Platforms
(1) Passenger platforms
(2) Goods platforms

12-8. Staff quarters

12-9. Goods traffic at wayside stations

Case I
Case II

12-10. Catch sidings

12-11. Definition of a yard

12-12. Types of yards

12-12-1. Passenger yards

12-12-2. Goods yards

12-12-3. Marshalling yards

(1) General
(2) Design of marshalling yards
(3) Features of marshalling yards
(4) Types of marshalling yards

12-12-4. Locomotive yards

12-13. Level-crossing

12-14. Ash-Pits, Ash-Pans And Examination Pits

12-15. Drop pits

12-16. Water columns

12-17. Triangles

12-18. Turntables

QUESTIONS 12

CHAPTER 13 SIGNALLING AND INTERLOCKING

13-1. Objects of signalling

13-2. Classification of signals

13-2-1. Classification according to function
(1) Stop signals or semaphore type signals
(2) Warner signals
(3) Disc or ground signals
(4) Coloured light signals

13-2-2. Classification according to location
(1) Outer signal
(2) Home signal
(3) Starter signal
(4) Advance starter signal

13-2-3. Special signals
(1) Routing signals
(2) Repeating signals
(3) Co-acting signals
(4) Calling-on signals
(5) Indicators
(6) Miscellaneous signals

13-3. Typical layouts
(1) Signalling at diverging junction
(2) Signalling at converging junction
(3) Signalling at a junction of two main lines and two branch lines with a siding

13-4. Various signalling systems
(1) Following trains system
(2) Absolute block system
(3) Automatic signalling
(4) Pilot guard system
(5) Centralized traffic control system
(6) Cab signalling system
(7) TGV signalling system

13-5. Interlocking
13-5-1. Essential principles of interlocking
13-5-2. Methods of interlocking
(1) Tappets and locks system
(2) Key system
(3) Route relay system (RRS)

13-5-3. Slotting of signals
(1) Meaning of the term
(2) Principles
(3) Purposes
(4) Methods

13-5-4. Detectors
13-5-5. Point lock and treadle or lock bar
13-5-6. Interlocking of level-crossings

13-5-7. Interlocking standards
(1) Automatic signalling
(2) Grouping of levers
(3) Interlocking
(4) Isolation of main line
(5) Large stations
(6) Starting signals

13-5-8. Improvements in interlocking and signalling

QUESTIONS 13

CHAPTER 14 CONSTRUCTION AND DRAINAGE OF RAILWAY TRACK

14-1. General
14-2. Usual forms of cross-sections
14-3. Features of railroad bed level
(1) Width of formation
(2) Slopes of sides
(3) Drains
(4) Method of construction

14-4. Drainage
(1) Action of water
(2) Importance of drainage
(3) Requirements of drainage system

14-5. Stabilization of track on poor soil
(1) Layer or blanket of moorum or sand
(2) Cement grouting
(3) Sand piles
(4) Use of chemicals
(5) By providing capillary break or cut-off

QUESTIONS 14

CHAPTER 15 MAINTENANCE, ACCIDENTS AND SAFETY

15-1. General
(1) Foundations
(2) Nature of structure

15-2. Necessity for maintenance of track
(1) New track
(2) Constant use

15-3. Maintenance of track proper
(1) Duties of a gangmate or a ganger
(2) Duties of a keyman
(3) Duties of a Permanent Way Inspector (P.W.I.)

15-4. Maintenance of railway bridges
15-5. Maintenance of rolling stock
15-6. Signalling during maintenance
15-7. Packing of ballast and sleepers
15-8. Rail inspection
15-9. Track inspection
15-10. Maintenance and boxing of ballast
15-11. Track imprist
15-12. Track work for high speeds

15-14. Emergency measures
(1) Diversions
(2) Ash or selected earth
(3) Temporary supports
(4) Scouring
(5) Wagons with rubble
(6) Breakdown vans

15-15. Accidents
(1) General
(2) Causes of accidents
(3) Points to be observed at the time of accident

15-16. Safety measures to avoid train accidents
(1) Safety camps
(2) Safety organization
(3) Propaganda campaign
(4) Rewards
(5) Psychological and other tests
(6) Proper maintenance of track
(7) Bumps near level-crossings
(8) Road surface
(9) Warning signs
(10) Visibility
(11) Speed
(12) Standards
SECTION II: BRIDGE ENGINEERING

CHAPTER 16 INTRODUCTION

16-1. General

16-2. Importance of bridges

16-3. Identification of bridges

16-4. Requirements of an Ideal Bridge

16-5. Selection of bridge site
 (1) Connection with roads
 (2) Freeboard
 (3) Firm embankments or river banks
 (4) Foundations
 (5) Large tributaries
 (6) Materials and labour
 (7) Minimum obstruction to waterway
 (8) Right-angle (square) crossing
 (9) Scouring and silting
 (10) Straight stretch of river
 (11) Velocity of flow
 (12) Width of river

16-6. Preliminary data to be collected for bridge project

16-7. Stages of investigation
 (1) Reconnaissance or technical feasibility stage
 (2) Preliminary or techno-economic feasibility stage
 (3) Detailed survey and project report stage

16-8. Preliminary and final project drawings
 (1) Catchment area map
 (2) Contour plan
 (3) Cross-sections
 (4) Index map
 (5) Longitudinal section
 (6) Soil profile

16-9. Choice of bridge type
 (1) Approaches
 (2) Availability of funds
 (3) Climatic conditions
 (4) Economy in construction
 (5) Foundations
 (6) Navigational requirements
 (7) Specialized firm
 (8) Type of traffic

16-10. Components of a bridge
 (1) Sub-structure
 (2) Super-structure
 (3) Adjoining structures

16-11. Approaches of bridge
 (1) Borrow pits
 (2) Construction
 (3) Cost
 (4) Curvature
 (5) Extension of bridge
 (6) Gradient
 (7) Joint walls
 (8) Maintenance
 (9) Width and length

16-12. Economic span of a bridge
 (1) Definition
 (2) Assumptions
 (3) Exceptions

16-13. Number of spans of a bridge
 (1) Alternative proposals
 (2) Foundations for piers
 (3) Odd number of spans
 (4) Span

16-14. Afflux
 (1) Definition
 (2) Importance
 (3) Height of afflux

16-15. Clearance and freeboard
 (1) Definition
 (2) Necessity
 (3) Provisions

16-16. Maximum flood discharge or High flood level (H.F.L.)

16-17. Length of a bridge

16-18. Grip Length

16-19. Linear Waterway of a bridge

16-20. Bridge Alignment
 (1) Alignment on curve
 (2) Control of highest flood level
 (3) Effects of silting and scouring
 (4) Layout of approaches
 (5) River training works
 (6) Skew bridges

16-21. Joints of bridge
 (1) Construction joints
 (2) Expansion and contraction joints

16-22. Handrails
 (1) Panel slab and post system
 (2) Post and rail system

16-23. River Training works
 (1) Objects
 (2) Methods

QUESTIONS 16

CHAPTER 17 BRIDGE FOUNDATIONS

17-1. General

17-2. Essential requirements of a good foundation
 (1) Location
 (2) Stability
 (3) Settlement

17-3. General principles of design of bridge foundations
 (1) Bearing capacity of soil
 (2) Frictional resistance
 (3) Scour depth

17-4. Subsoil exploration
 (1) Test pits
 (2) Probing
 (3) Auger boring
 (4) Wash boring
 (5) Test piles
 (6) Deep boring
 (7) Geophysical method

17-5. Testing of soil samples
 (1) Plate bearing test
 (2) Standard penetration test (SPT)
 (3) Vane shear test

17-6. Types of foundations

17-7. Spread foundations

17-8. Pile foundations
 (1) General:
 (2) Requirements for pile foundation
(3) Types of piles

17-9. Caissons and Cofferdams
(1) Caissons
(2) Cofferdam

17-9-1. Classification of caissons
17-9-2. Materials used for the construction of caissons
(1) Cast-iron
(2) Reinforced cement concrete
(3) Steel
(4) Timber

17-9-3. Requirements of a cofferdam
17-9-4. Uses of caissons
17-9-5. Uses of cofferdams
17-9-6. Types of cofferdams
(1) Dikes
(2) Single wall cofferdams
Construction of single wall cofferdam
(3) Double wall cofferdams
(4) Cellular cofferdams
(5) Rock-filled crib cofferdams
(6) Concrete cofferdams
(7) Suspended cofferdams

17-9-7. Prevention of leakage in cofferdams
17-9-8. Factors affecting design of a cofferdam
17-9-9. Difference between cofferdam and caisson

Questions 17

CHAPTER 18 SUB-STRUCTURES

18-1. General
18-2. Abutments
(1) Definition
(2) Functions
(3) Types of abutments
(4) Forces acting on an abutment
(5) Conditions of stability
(6) Dimensions

18-3. Piers
(1) Definition
(2) Function
(3) Types of piers
(4) Forces acting on a pier
(5) Conditions of stability
(6) Dimensions
(7) Location
(8) Abutment pier

18-4. Wing walls
(1) Definition
(2) Functions
(3) Types of wing walls
(4) Forces acting on a wing wall
(5) Conditions of stability
(6) Dimensions
(7) Precautions

18-5. Setting out for piers and abutments
(1) Bench marks
(2) Positions of reference points
(3) Principal reference lines
(4) Replacing original points

18-6. Materials for sub-structures
(1) Cement concrete
(2) Masonry
(3) Steel

18-7. Bridge Inspection

QUESTIONS 18

CHAPTER 19 CLASSIFICATION OF BRIDGES

19-1. History of bridge development
(1) Arch bridges
(2) Suspension bridges
(3) Simply supported bridges
(4) Truss and girder bridges

19-2. Classification Of Bridges
19-3. Bridges According to material used
(1) R.C.C. and pre-stressed cement concrete bridges
(2) Brick or stone masonry bridges
(3) Steel bridges
(4) Timber bridges
(5) Composite bridges

19-4. Bridges According to the position of bridge floor
(1) Deck bridges
(2) Through bridges
(3) Semi-through bridges:

19-5. Bridges According to the inter span relations
(1) Simple bridges or beam bridges
(2) Continuous bridges
(3) Simple cantilever bridges
(4) Balanced type cantilever bridge

19-6. Bridges According to the type of super-structure
(1) Arch bridges
(2) Bow-string girder bridges
(3) Rigid frame bridges
(4) Suspension bridges
(5) Advantages and disadvantages of suspension bridges
(6) Cable-stayed bridges

19-7. Bridges According to the method of clearance for navigation
(Movable bridges)
(1) Bascule bridges
(2) Lift bridges
(3) Transporter bridges
(4) Swinging bridges
(5) Traversing bridges
(6) Flying bridges

19-8. Bridges According to the length of span or as per linear waterway
(1) Arch culverts
(2) Box culverts
(3) Pipe culverts
(4) Slab culverts
(5) Scuppers

19-9. Bridges According to the road level relative to highest flood level (H.F.L.)
(1) Submersible bridges or causeways
(2) Non-submersible bridges

19-10. Bridges According to life of super-structure
(1) Permanent bridges
(2) Temporary bridges

19-10-1. Temporary Bridges with intermediate supports
(1) Crates
(2) Cribs
(3) Pile bents
(4) Trestles

19-10-2. Temporary Bridges without intermediate supports
(1) Cantilevers
(2) Suspension bridges
(3) Trusses

19-10-3. Temporary Floating bridges
(1) Boat bridges
(2) Pontoon bridges
(3) Raft bridges

19-11. Bridges According to flexibility of super-structure
(1) Fixed span superstructure
(2) Movable span superstructure

19-12. Bridges According to the alignment

19-13. Bridges According to level of crossing of highways and railways
(1) Over bridge
(2) Under bridge

19-14. Bridges According to method of connections adopted for different parts of super structure
(1) Pinned connection bridge
(2) Riveted connection bridge
(3) Welded connection bridge

19-15. Bridges According to the function of a bridge
(1) Aqueduct bridge (canal over a river)
(2) Viaduct (road or railway over a valley or river)
(3) Pedestrian bridge
(4) Highway bridge
(5) Railway bridge:
(6) Road-cum-rail or pipe line bridge

19-16. Bridges according to the degree of redundancy
(1) Determinate bridge
(2) Indeterminate bridge

19-17. Bridges according to the loading

Questions 19

CHAPTER 20 BRIDGE FLOORING

20-1. General

20-2. Factors affecting the choice of Flooring material

20-3. Requirements of a good flooring material

20-4. Types of floors
(1) Open floors
(2) Solid floors

20-5. Flooring materials
(1) Jack arch
(2) Mild steel buckle plates
(3) Mild steel plates
(4) Mild steel troughs
(5) Reinforced cement concrete
(6) Timber

20-6. Drainage of floors

QUESTIONS 20

CHAPTER 21 BRIDGE BEARINGS

21-1. Definition

21-2. Purposes or functions of bearings

21-3. Importance of bearings

21-4. Free and fixed bearings

21-5. Types of bearings
(1) Cement mortar pad
(2) Expansion bearing
(3) Knuckle bearing
(4) Rocker and roller bearing
(5) Rocker bearing
(6) Rubber bearing
(7) Neoprene bearing pads
(8) Sliding bearing
(9) Sole plate on curved bed plate bearing
(10) Tar paper bearing
(11) Pin bearing
(12) Pot bearing
(13) Laminated elastomeric bearing

21-6. Materials for bearings

21-7. Bed blocks

21-8. Maintenance of bearings

QUESTIONS 21

CHAPTER 22 DESIGN OF BRIDGES

22-1. General

22-2. Buoyancy pressure

22-3. Centrifugal forces
(1) Road bridges
(2) Railway bridges

22-4. Dead load
(1) Unwin’s formula
(2) American formula for plate girders
(3) American formula for trusses
(4) R.C.C. arches
(5) R.C.C. slab bridges upto 6 m span
(6) R.C.C. slab and T beam bridges

22-5. Deformation stresses

22-6. Earth pressure

22-7. Erection stresses

22-8. Impact load
(1) For road bridges
(2) For railway bridges

22-9. Live load
(1) For road bridges
(2) For railway bridges

22-10. Longitudinal forces
(1) For road bridges
(2) For railway bridges

22-11. Secondary stresses
(1) In case of R.C.C. structures
(2) In case of steel structures

22-12. Seismic load

22-13. Temperature variation forces
(1) Concrete structures
(2) Metal structures
(3) Temperature variation

22-14. Water pressure

22-15. Wind load
(1) For road bridges
(2) For railway bridges

22-16. Design of bridge foundations

22-17. Forces acting on different components of a bridge
(1) Forces acting on foundation
(2) Forces acting on abutments
(3) Forces acting on piers
(4) Forces acting on wing walls
(5) Forces acting on super-structures

QUESTIONS 22

CHAPTER 23 CONSTRUCTION AND ERECTION METHODS OF BRIDGE

23-1. General
(1) Centering
(2) Field forces
(3) Machinery
(4) Measurement of span
(5) Selection of method

23-2. Erection of steel girders
(1) Building out from supports
(2) Floating
(3) Lifting
(4) Rolling
(5) Staging

23-3. Erection of Steel Truss Bridges
 (1) First stage
 (2) Second stage
 (3) Third stage
 (4) Fourth stage

23-4. Erection of Suspension Bridges
 (1) Erection of towers
 (2) Erection of suspenders
 (3) Erection of catwalks
 (4) Erection of stiffening trusses
 (5) Erection of flooring system

23-5. Construction of Pre-Stressed Concrete Super-Structure

23-6. Erection of R.c.c. And Pre-Stressed Girder Bridges
 (1) Cast-in-situ construction on staging
 (2) Segmental cantilever construction using cast-in-situ or precast segments
 (3) Span by span method
 (4) Incremental launching method
 (5) Movable form system or movable scaffold system

23-7. Formwork for arch bridges
 (1) Good features
 (2) Types

QUESTIONS 23

CHAPTER 24 TESTING, STRENGTHENING AND MAINTENANCE OF BRIDGES

24-1. General
24-2. DETERIORATION OF BRIDGES
24-3. Bridge Failures
24-4. Defects of bridges and their rectification
 (1) Cracks in concrete
 (2) Corrosion of structural steel work
 (3) Other defects of bridge
24-5. Inspection of bridges
 (1) Detailed inspection
 (2) Routine inspection
24-6. Posting of bridges
 (1) Load limit postings
 (2) Speed postings
24-7. Rating of existing bridges
 (1) Magnetic particle detector
 (2) Radiographic equipment
 (3) Ultrasonic testing equipment
24-8. Rebuilding of bridges
 (1) Damage
 (2) Excessive maintenance cost
 (3) Obsolescence
 (4) Weathering
24-9. Testing and strengthening of bridges
 (1) Correlation method
 (2) Load testing
 (3) Theoretical method
24-10. Maintenance of the bridges

QUESTIONS 24

SECTION III TUNNEL ENGINEERING

CHAPTER 25 GENERAL ASPECTS OF TUNNELLING

25-1. General
 (1) Tunnel
 (2) Open cut
 (3) Bridge
 (4) Surface road

25-2. Advantages and disadvantages of tunnelling
 (1) Advantages of tunnelling (Necessity of tunnels)
 (2) Disadvantages of tunnelling
25-3. Advantages and disadvantages of open cuts
 (1) Advantages
 (2) Disadvantages
25-4. Classification of tunnels
 (1) Classification of tunnels according to alignment
 (2) Classification of tunnels according to purpose
 (3) Classification of tunnels according to type of material met with in the construction
25-5. Shapes of tunnels
 (1) D-section or segmental roof section
 (2) Circular section
 (3) Rectangular section
 (4) Elliptical section
 (5) Horse-shoe section
 (6) Egg-shaped section
25-6. Comparison of bypassing Alternatives Tunnel, Open cut, bridge and surface road
25-7. Size of tunnels
25-8. Problems IN tunnelling

QUESTIONS 25

CHAPTER 26 ALIGNMENT OF TUNNEL

26-1. Alignment of a tunnel
 (1) Alignment restraints
 (2) Environmental considerations
26-2. Investigations for tunnel site
 (1) Investigations before planning
 (2) Investigations at the time of planning
 (3) Investigations at the time of construction
26-3. Setting out of tunnel
 (1) Setting out tunnel on ground surface
 (2) Transfer of centre line from surface to underground
 (3) Underground setting out
 (4) Underground levelling
26-4. Excavation
 (1) Drilling of holes
 (2) Selection of drilling equipment
 (3) Types of mounts
26-5. Excavation of tunnels in rock with machines
26-6. Blasting
 (1) Types of explosives
 (2) Cuts
 (3) Theory of blasting
 (4) Quantity of rock released
26-7. Supplementary operations
 (1) Checking of soundness of freshly cut surface
 (2) Contour trimming
 (3) Sealing of cracks, weak zones, etc.
26-8. Miscellaneous
 (1) Progress of tunnelling work
 (2) Procedure of work
 (3) Emergency services

QUESTIONS 26

CHAPTER 27 SHAFTS AND PORTALS

27-1. General
27-2. Advantages of shafts
27-3. Size of shafts
27-4. Location of shafts
 (1) Shafts over centre-line
 (2) Side shafts
27-5. Classification of shafts
 (1) Temporary shafts
 (2) Permanent shafts
 (3) Vertical shafts
 (4) Inclined shafts

27-6. Construction of shafts in rock
 (1) Drilling and blasting
 (2) Mucking
 (3) Timbering
 (4) Pumping
 (5) Raising

27-7. Construction of Shafts in soft SOIL
 (1) Shallow shafts in soft soil – Method of sinking:
 (2) Deep shafts in soft soil:

27-8. Design of shaft supports

27-9. Precautions for shaft sinking work in soft soil

27-10. Protection round the shaft opening

27-12. Twin tunnels

QUESTIONS 27

CHAPTER 28 TUNNELLING IN HARD ROCK

28-1. General

28-2. Sequence of operations for tunnelling in rock

28-3. Faces of attack for tunnelling in rock
 (1) System of vertical shafts
 (2) System of pilot tunnels

28-4. Methods of tunnelling in rock
 (1) Drift method
 (2) Heading and bench method
 (3) Full face method
 (4) Cantilever car dump method

28-5. Mucking

28-6. Mucking in steep grade tunnelling

28-7. Hauling

28-8. Safety precautions in rock tunnelling

QUESTIONS 28

CHAPTER 29 TUNNELLING IN SOFT SOIL

29-1. Soil classification

29-2. Choice of method
 (1) Equipment available
 (2) Method of sequence of excavation
 (3) Size of tunnel
 (4) Type of ground

29-3. Methods of tunnelling in soft soil

29-4. Forepoling method

29-5. Needle beam method

29-6. Army method or case method

29-7. American method

29-8. English method

29-9. Belgian method

29-10. German method

29-11. Austrian method

29-12. Liner plates method
 (1) Liner plates with stiffening ribs
 (2) Liner plates without stiffening ribs
 (3) Uses of liner plates with ribs

29-13. Tunnelling with shield
 (1) Shield
 (2) Dimensions of shield
 (3) Tail or rear portion

29-13-2. Terms commonly used with shield
 (1) Shove of shield
 (2) Length of shove
 (3) Open shove
 (4) Partially blind shove
 (5) Blind shove

29-13-3. Primary lining in shield
 (1) General
 (2) Requirements for primary lining

29-13-4. General steps of tunnelling with shield

29-13-5. Shield tunnelling in different types of soils

29-13-6. Common Equipment with shield
 (1) Supporting means or supporting equipment
 (2) Gravel tank
 (3) Chute
 (4) Trailing dam

29-13-7. Sequence of tunnelling using the shield
 (1) Excavation
 (2) Mucking and hauling
 (3) Advancement or shoving
 (4) Installation of primary lining
 (5) Grouting caulking and drainage

29-14. Cut and cover method

29-14-1. Salient features of cut and cover method

29-14-2. Types of construction methods
 (1) Bottom-up construction method
 (2) Top-down construction method

29-15. Timbering in soft soil tunnelling

QUESTIONS 29

CHAPTER 30 TUNNEL BORING MACHINE

30-1. Mechanized shields
 (1) Rotary wheel type mechanised shield
 (2) Planetary cutting assemblies
 (3) Oscillatory type mechanized shield
 (4) Auger head cutting assemblies
 (5) Active horizontal shelf shield
 (6) Water jets

30-2. Mechanised Tunnel boring machine
 (1) General
 (2) Types of mechanized tunnel boring machine
 (3) Advantages of mechanized tunnelling
 (4) Disadvantages of mechanized tunnelling

30-3. Factors for Selection of Tunnel boring machine

30-4. Sequence of mechanised tunnel boring machine

30-5. Difference between open type TBM and closed type shield TBM

30-6. Difference between single shield TBM and double shield TBM

Questions 30

CHAPTER 31 NEW AUSTRIAN TUNNELLING METHOD (NATM)
[SEQUENTIAL EXCAVATION METHOD]

31-1. Introduction to NATM

31-2. Objectives of NATM

31-3. FEATURES of NATM
 (1) Mobilization of the strength of rock mass
 (2) Shotcrete protection
 (3) Measurements and monitoring
 (4) Flexible support
 (5) Closing of invert
 (6) Contractual arrangements
 (7) Rock mass classification determines support measures

31-4. Components And Sequence Of Execution In Natm
 (1) Survey and profile marking
(2) Forepoling
(3) Face drilling
(4) Charging and blasting
(5) De-fuming
(6) Mucking
(7) Scaling and chipping
(8) 3D monitoring targets installation
(9) Face sealing shotcrete
(10) Fixing of wire mesh
(11) Rock bolting
(12) Grouting
(13) Primary lining with shotcrete
(14) Fixing of lattice girders
(15) Second layer of shotcreting
(16) Waterproofing
(17) Final lining

31-5. Conclusions
Questions 31

CHAPTER 32 TUNNEL LINING
32-1. Necessity of lining
32-2. Objects of tunnel lining
32-3. Materials for lining
(1) Masonry for lining of tunnel
(2) Stone masonry for lining of tunnel
(3) Cement concrete for lining of tunnel
(4) Timber for lining of tunnel
(5) Cast-iron for lining of tunnel
32-4. Design of thickness of lining
(1) General
(2) Timber lining
(3) Concrete lining
32-5. The Sequence Of Lining A Tunnel
(1) Placing the entire lining in one operation
(2) Placing the invert first and the rest of the lining next
(3) Placing the invert first, the sides next and finally the roof
(4) Placing side walls first, then roof and finally invert
(5) Curbs installed at the sides first, then walls and roofs and finally invert

QUESTIONS 32

CHAPTER 33 LIGHTING, VENTILATION AND DUST CONTROL IN TUNNELS
33-1. Tunnel Lighting
33-1-1. Spacing of lights
33-1-2. Types of tunnel lights
(1) Lanterns and lamp burning oil
(2) Coal gas lighting
(3) Acetylene gas lighting
(4) Electric lighting
33-2. Ventilation in tunnels
33-2-1. Objects of tunnel ventilation
33-2-2. Requirements of tunnel ventilation
33-2-3. Volume of air required
33-2-4. Methods of ventilation
(1) Natural ventilation
(2) Mechanical ventilation
33-2-5. Equipment required for tunnel ventilation
(1) Fans for tunnel ventilation
(2) Pipes for tunnel ventilation
33-2-6. Permanent ventilation and noise pollution
(1) Permanent ventilation
(2) Permanent ventilation for long tunnels
(3) Systems or methods of permanent ventilation
(4) Noise pollution
33-3. Dust control and methods
(1) Dust control
(2) Dust control methods

QUESTIONS 33

CHAPTER 34 DRAINAGE IN TUNNELS
34-1. General
34-2. Pre-drainage
34-3. Dewatering
34-4. Permanent drainage

QUESTIONS 34

CHAPTER 35 SAFETY IN TUNNEL CONSTRUCTION
35-1. General
35-2. Safety precautions in tunnelling
35-3. Health protection in tunnel construction
(1) Protection from Silicosis
(2) Protection from Caisson diseases

Questions 35

APPENDICES
APPENDIX I ABBREVIATED TERMS
APPENDIX II GTU EXAMINATION PAPERS
INDEX