In this textbook the author has compiled the topics of Electricity, Magnetism and Materials as a one subject, which are the three foundation pillars of Electrical and Communication Engineering. These are presented with a little different method of approach to ensure the students to grasp the whole subject matter of the book easily.

The static electricity is the science of static charge including that of electric induction and the motional charge is an electric current. Magnetism in fact is an effect of electric current and electromagnetic induction is the interconsequence of varying electricity and magnetism. Since as per modern theory of atom, the electricity and magnetism have the origins in the matter itself. Therefore chapter of Electric Properties of Matter after Static Electricity and chapter of Magnetic Properties of Matter after Magnetism are introduced. These two chapters thus give introduction of conducting, insulating, semi-conducting and magnetic materials used in Electrical Engineering. Therefore, in the book before the chapters of materials, their related theories are given, and then chapters of materials are dealt. The chapter of Electric Current and Circuits being a link between electricity and magnetism is introduced as a fourth chapter. The chapter one of Introduction deals with the systems of units, which is a proper place for it. The book therefore presents a sound and comprehensive account of fundamental principles and their application orderly arranged.

The book now in its 14 Chapters contains:

- 143 Neatly drawn self-explanatory diagrams
- 42 Worked Examples
- 21 Useful Tables
- 237 Unsolved problems with answers at the end of each chapter
- 212 Objective Questions.

The book therefore covers adequately the most recent requirements of various important examinations. It is the fervent hope of the author that this book will satisfy the needs of the Engineering students preparing for the B.Tech/B.E. examinations of almost all the Indian Universities, Diploma examinations conducted by various Boards of Technical Education, Certificate courses as well as for the A.M.I.E., U.P.S.C., G.A.T.E. and other similar competitive and professional examinations. It should also be of an immense help to the practising engineers.
Chapter 1 INTRODUCTION (SYSTEMS OF UNITS)

1-1 Introduction
1-2 Metric (cgs) system of units
1-3 Relation between electric and magnetic units
1-4 Practical system of units
1-5 Mks (giorgi) system of units
1-6 Relations with cgs units
1-7 Rationalization of poles
1-8 System international d’ units (SI)

Problems 1
Objectives 1

Chapter 2 STATIC ELECTRICITY (ELECTRIC FIELD)

2-1 Introduction
2-2 Electric charge
2-3 Coulomb’s law
2-4 Charging a body and charge density
2-5 Electric field
2-6 Electric flux
2-7 Electric flux density
2-8 Extension of coulomb’s law in electric media
2-9 Gauss’ law
2-10 Relation between D and E
2-11 Electric field due to a charged sphere
2-12 Electric potential
2-13 Potential at a point due to the number of charges
2-14 Maxwell’s potential coefficient method
2-15 Potential difference and potential gradient
2-16 Electric field and potential distribution of a charged sphere
2-17 Electric moment
2-18 Field at a point due to a dipole
2-19 Field at a point along the axis of a charged ring
2-20 Electric field around a charged thin wire
2-21 Electric field around a charged cylinder
2-22 Electric field between two charged cylinders
2-23 Field between two parallel charged plates
2-24 Poisson’s and laplace’s equations
2-25 Equipotential surfaces
2-26 Energy stored in an electric field

Problems 2
Objectives 2

Chapter 3 ELECTRIC PROPERTIES OF MATTER

3-1 Introduction
3-2 Classical theory of atom
3-3 Neils Bohr theory
3-4 Electronic structure of element
3-5 Electronic shells
3-6 Valence electrons
3-7 Structure of matter
3-8 Classification of electrical materials
3-9 Electric field distribution and potential barrier
3-10 Charging of insulating materials
3-11 Electric permittivity
3-12 Boundary condition at two anisotropic media
3-13 Polarization

Problems 3
Objectives 3

Chapter 4 ELECTRIC CURRENT AND CIRCUITS

4-1 Introduction
4-2 Conduction through metals, electric current
4-3 Average value of current
4-4 Quantity of electricity
4-5 Electric conduction and conductivity

Chapter 5 ELECTRIC CAPACITANCE

5-1 Introduction
5-2 Electric capacitance
5-3 Self-capacitance of an isolated charged sphere
5-4 Capacitance of a parallel plate capacitor (air cored)
5-5 Capacitance of dielectric capacitor
5-6 Energy stored in a charged capacitor
5-7 Capacitance of cylindrical capacitor
5-8 Capacitance of spherical capacitor
5-9 Capacitors in series and in parallel
5-10 Multiplate capacitors
5-11 Capacitance of single straight conductor parallel to earth (method of electric images)
5-12 Capacitance of two parallel conductors
5-13 Capacitance of three symmetrically spaced conductors

Problems 5
Objectives 5

Chapter 6 MAGNETISM (MAGNETIC FIELD)

6-1 Introduction
6-2 Magnetic poles
6-3 Coulomb’s law
6-4 Magnetic field
6-5 Magnetic flux density
6-6 Extension of coulomb’s law in the magnetic media
6-7 Gauss’ law
6-8 Magnetic moment
6-9 Magnetic potential
6-10 Magnetic potential at a point due to a magnetic pole
6-11 Energy associated with the magnetic field
6-12 Magnetic effect of electric current
6-13 Direction of fields
6-14 Magnetic field of a straight conductor
6-15 Ampere’s circuital law
6-16 Magnetic field of current carrying conductor
6-17 Magnetomotive force
6-18 Field of a circular coil
6-19 Solenoid

Problems 6
Objectives 6

Chapter 7 MAGNETIC PROPERTIES OF MATTER

7-1 Introduction
7-2 Theory of magnetism
7-3 Barkhausen effect
7-4 Surface currents
7-5 Magnetic permeability
7-6 Magnetization
7-7 Magnetic hysteresis
7-8 Magnetization curves
7-9 Magnetic circuit and law of magnetic flux
7-10 Series and parallel magnetic circuits
7-11 Electromagnet
Problems 7
Objectives 7

Chapter 8 ELECTROMAGNETIC INDUCTION
8-1 Introduction
8-2 Induced electromotive force (emf) and Lenz’s law
8-3 Dynamically induced emf
8-4 Self-induction
8-5 Energy of an inductor
8-6 Mutual induction
8-7 Inductors in series and in parallel
8-8 Inductance of two parallel conductors
8-9 Inductance of three symmetrically spaced conductors
8-10 Eddy currents
8-11 Force on a current carrying conductor
8-12 Force between two current carrying conductors
Problems 8
Objectives 8

Chapter 9 MAGNETIC MATERIALS
9-1 Introduction
9-2 Permanent (hard) magnetic materials
9-3 Low-loss (soft) magnetic materials
9-4 Nickel steels
9-5 Grain oriented sheet steel
9-6 Ferrites
Problems 9
Objectives 9

Chapter 10 THEORY OF INSULATING MATERIALS
10-1 Introduction
10-2 Effect of temperature and frequency on permittivity
10-3 Ferroelectric materials
10-4 Conduction in insulating materials
10-5 Dielectric loss
10-6 Breakdown in solid insulating materials
10-7 Breakdown in liquid and gaseous insulating materials
10-9 Standard electrode gap
Problems 10
Objectives 10

Chapter 11 SOLID INSULATING MATERIALS
11-1 Introduction
11-2 Fibrous materials
 (1) Wood
 (2) Pressboards
 (3) papers
 (4) Yarn cloths (fabrics)
 (5) Cotton yarn
 (6) Artificial fabrics
 (7) Synthetic fabrics
 (8) Varnished cloths
11-3 Asbestos
11-4 Mica and mica based products
11-5 Glass
11-6 Porcelain
11-7 Ceramics
 (1) Radio porcelain
 (2) Ultra porcelain
 (3) High aluminium ceramic
 (4) Lucalox
 (5) Steatite ceramic

(6) High permittivity ceramics
(7) Rutile ceramic
(8) Calcium titanate ceramic
(9) Strontium titanate ceramic
(10) High temperature ceramics
(11) Cordierit ceramics
(12) Oxide free ceramics

11-8 Rubbers (elastomers)
 (1) Natural rubber
 (2) Silicone rubber products
 (i) Silicone rubber
 (ii) Synthetic rubber
 (iii) Butadiene rubber (escapon)
 (iv) Styrene butadiene rubber
 (v) Butyl rubber
 (vi) Chloroprene rubber

(3) Polyvinyl chloride (P.V.C.)

11-9 Moulded plastics
Properties to plastics
11-10 Laminated plastics
Problems 11
Objectives 11

Chapter 12 LIQUID AND GASEOUS INSULATING MATERIALS
12-1 Introduction
12-2 Resins
 (1) Natural Resins, Shellac
 (2) Rosins
 (3) Copals
 (4) Synthetic Resins
 (5) Polytetrafluoro ethylene (Polyolefins) resins
 (6) Polyvinyle chloride
 (7) Polymide resins
 (8) Polyester resins
 (9) Phenol formaldehyde resins
 (10) Epoxy resins
 (11) Silicon resins
12-3 Bitumens
Asphalts
12-4 Waxes
 (1) Paraffin
 (2) Ceresin
 (3) Synthetic Paraffins
 (4) Vaseline (petroleum jelly)
12-5 Potting compounds
12-6 Vegetable oils
 (1) Castor Oil
 (2) Linseed Oil
 (3) Tung Oil
12-7 Insulation varnishes
 (1) Adhesive Varnishes
 (2) Bakelite varnishes
 (3) Glyptal varnishes
 (4) Oleoglyptal varnishes
Chapter 13 CONDUCTING MATERIALS

13-1 Introduction

13-2 Conductors
 (1) Copper
 (2) Aluminium
 (3) Silver
 (4) Mercury
 (5) Bronze
 (6) Brass
 (7) Alderney
 (8) Steel
 (9) Carbon

13-3 Resistance materials
 (1) Manganin
 (2) German silver

13-4 Thermocouple materials

13-5 Thermal bimetallic materials

Chapter 14 SEMICONDUCTING MATERIALS

14-1 Introduction

14-2 Intrinsic and extrinsic semiconductors

14-3 Conduction in extrinsic semiconductors

14-4 Determination of types of conduction

14-5 Effect of impurity density on charge carriers

14-6 Effect of light (photon) radiation

14-7 Semiconductor elements
 (1) Germanium
 (2) Silicon
 (3) Selenium

14-8 Compound semiconductors
 (1) Silicon carbide
 (2) Gallium arsenides
 (3) Indium antimonide
 (4) Sulphides
 (5) Oxides

Problems 14

Objectives 14

Index