ABOUT THE BOOK

This text-book published in continuation of its Vol. I. This volume discusses the theory and analysis of structures in comprehensive and lucid manner.

This book is written by an eminent author who had an experience of over thirty years in the teaching of the subject, and now, it is revised and enlarged by the experienced teacher.

The book within its 21 chapters now contains more than:

* 400 Fully solved problems
* 440 Examples with answers
* 640 Neatly drawn diagrams

It is published entirely in SI Units.

It is hoped that this edition will prove extremely useful to the students of Civil, Mechanical and Architecture Engineering reading for Degree Examinations of all the Universities of India, Diploma Examinations conducted by various Boards of Technical Examinations, also Certificate Courses, as well as for the A.M.I.E., U.P.S.C., G.A.T.E., I.E.S. and other similar competitive and professional Examinations. It should also prove of great interest and practical use to the practising engineers.

CONTENT

1. INFLUENCE LINES FOR BEAMS
2. ROLLING LOADS
3. INFLUENCE LINES FOR TRUSSES
4. MASONRY DAMS AND RETAINING WALLS
5. CABLES AND SUSPENSION BRIDGES
6. THREE HINGED ARCHES
7. FORCES IN FRAMED STRUCTURES
8. INDETERMINATE STRUCTURES
9. DEFLECTIONS I
10. DEFLECTIONS II
11. CONSISTENT DEFORMATION I
12. CONSISTENT DEFORMATION II
13. LEAST WORK AND THEOREM OF THREE MOMENT
14. INDETERMINATE ARCHES
15. SLOPE DEFLECTION METHOD
16. MOMENT DISTRIBUTION METHOD
17. COLUMN ANALOGY METHOD
18. THE ELASTIC CENTRE
19. THE RECIPROCAL THEOREM
20. PLASTIC THEORY
21. INTRODUCTION TO MATRIX METHODS OF ANALYSIS

INDEX
MECHANICS OF STRUCTURES VOL. II

DETAILED CONTENTS

Chapter 1 INFLUENCE LINES FOR BEAMS

1-1. Introductory
1-2. Influence line
1-3. Influence lines for simple beam reactions
1-4. Influence lines for simple beam shears
1-5. Influence lines for simple beam moments
1-6. Uses of influence lines
1-7. Influence lines for girders with floor joists
1-8. Compound beams
1-9. Closure

Examples I

Chapter 2 ROLLING LOADS

2-1. Rolling loads
2-2. Maximum shear in a beam supporting uniformly distributed loads
2-3. Maximum bending moments at sections in beams supporting uniformly distributed load
2-4. Maximum shear at sections in a beam supporting two concentrated loads
2-5. Maximum moment at sections in a beam supporting two concentrated loads
2-6. Maximum end shear in a beam supporting a series of moving concentrated loads
2-7. Maximum shear at sections of beams supporting a series of moving concentrated loads
2-8. Maximum moment at a section in a beam supporting a series of moving concentrated loads
2-9. Absolute maximum moment in a beam supporting a series of moving concentrated loads
2-10. Maximum S.F. and maximum B.M. diagrams
2-11. Equivalent uniformly distributed load
2-12. Combined dead load and moving load S.F. diagrams: Focal length

Examples II

Chapter 3 INFLUENCE LINES FOR TRUSSES

3-1. Introductory
3-2. Bridge floor system
3-3. Influence lines for truss reactions
3-4. Influence lines for member forces
3-5. Determination of maximum forces
3-6. Counters in bridge trusses
3-7. Influence lines for non-parallel chord trusses

Examples III

Chapter 4 MASONRY DAMS AND RETAINING WALLS

4-1. Water pressure
4-2. Conditions of stability
4-3. The minimum bottom width for stability
4-4. Trapezoidal section with a sloping water face
4-5. Other forms of section
4-6. Resultant thrust outside the middle third
4-7. Retaining walls
4-8. The inclined plane
4-9. Rankine’s theory of earth pressure
4-10. Retaining wall of trapezoidal section, earth level with the top of the wall
4-11. Surcharged retaining wall
4-12. Graphical methods
4-13. Wedge theory of earth pressure: Rebhann – Häseler’s method
4-14. Minimum depth of foundation

Examples IV

Chapter 5 CABLES AND SUSPENSION BRIDGES

5-1. Equilibrium of a light suspended cord under a given system of loading
5-2. Shape of the cord
5-3. Light suspension bridges
5-4. Cable supports at different levels
5-5. Anchor cables
5-6. Temperature stresses
5-7. The Catenary
5-8. Moving loads on suspension bridges
5-9. Suspension bridge with three hinged stiffening girders
5-10. Two hinged stiffening girder
5-11. Temperature stresses in stiffening girder

Examples V

Chapter 6 THREE HINGED ARCHES

6-1. Metal arches
6-2. Linear arch or line of thrust
6-3. Bending moments: Eddy’s theorem
6-4. Three hinged arch
6-5. Braced three hinged arch
6-6. Graphical methods
6-7. Moving loads on three hinged arches
6-8. Temperature effects

Examples VI

Chapter 7 FORCES IN FRAMED STRUCTURES

7-1. Framed structures with sub-divided panels
7-2. Pratt truss with parallel chords and sub-struts: through type
7-3. Pratt truss with parallel chords and sub-ties: deck type
7-4. Pratt truss with non-parallel chords
7-5. Warren truss with sub-divided panels
7-6. Rolling loads: Influence lines
7-7. Pratt truss with inclined chord: Influence lines
7-8. The Wichert Truss
7-9. Dynamical loads on bridges: Impact allowance
7-10. Wind pressure
7-11. Working stresses

Chapter 8 INDETERMINATE STRUCTURES

8-1. Determinateness of the structure
8-2. Use of indeterminate structures
8-3. Methods of analysis
8-4. Approximate analysis of indeterminate structures
8-5. Truss with two hinges
8-6. Trusses with two diagonals in each panel
8-7. Industrial frame
8-8. Building frames subjected to gravity loads
8-9. Building frames subjected to lateral loads
8-10. The portal method
8-11. The cantilever method
8-12. Vierendeel truss

Examples VIII

Chapter 9 DEFLECTIONS I

9-1. Introductory
9-2. Moment area method
9-3. Method of elastic weights
9-4. Conjugate beam method
9-5. Virtual work — unit load method: Basic formula
9-6. The unit load method applied to deflections of beams and frames
9-7. The unit load method applied to beam rotations
9-8. Strain energy
9-9. Castigliano’s first theorem
9-10. Castigliano’s first theorem applied to beam deflections and rotations

Examples IX
MECHANICS OF STRUCTURES VOL. II
DETAILED CONTENTS

Chapter 10 DEFLECTIONS II
DEFLECTION OF FRAMED STRUCTURES
10-1. The unit load method applied to deflections of trusses
10-2. The first theorem of Castigliano
10-4. Maxwell’s theorem of reciprocal deflections
10-5. Influence line for deflection
Examples X

Chapter 11 CONSISTENT DEFORMATION I
11-1. The method of consistent deformation
11-2. Beams with one redundant
11-3. Beams with two or more redundants
11-4. Continuous beams
11-5. Fixed beams
11-6. Support settlement
11-7. Influence lines for indeterminate beams
11-8. Qualitative influence lines
Examples XI

Chapter 12 CONSISTENT DEFORMATION II
ANALYSIS OF INDETERMINATE TRUSSES
12-1. Externally redundant trusses
12-2. Internally redundant trusses
12-3. Externally and internally redundant trusses
12-4. Secondary forces
12-5. Influence lines for statically indeterminate trusses
Examples XII

Chapter 13 LEAST WORK AND THEOREM OF THREE
MOMENT
13-1. The second theorem of Castigliano: Principle of least work or minimum strain-energy
13-2. Portal frames
13-3. The three moment theorem
13-4. Support settlement
Examples XIII

Chapter 14 INDETERMINATE ARCHES
14-1. Bending of a curved bar
14-2. Two-hinged arch
14-3. Moving loads on two-hinged arches
14-4. Temperature stresses
14-5. Fixed arch
14-6. Temperature stresses
14-7. Two-hinged arch: Strain energy method
14-8. Suspension cable with a two-hinged stiffening girder
14-9. The masonry arch
14-10. Fuller’s test for stability of an arch
Examples XIV

Chapter 15 SLOPE DEFLECTION METHOD
15-1. Introduction
15-2. Sign conventions
15-3. Development of slope deflection equations: Assumptions
15-4. Modification for simple ends
15-5. Frames with no side-sway
15-6. Frames with side-sway
Examples XV

Chapter 16 MOMENT DISTRIBUTION METHOD
16-1. Introductory
16-2. Description of the method
16-3. Carry-over moment
16-4. Distribution factors
16-5. Definitions
16-6. Sign conventions
16-7. Fixed end moments
16-8. Application of method
16-9. Modification of stiffness for simple ends
16-10. Shear and moment diagrams
16-11. Overhanging beams

Chapter 17 COLUMN ANALOGY METHOD
17-1. Introductory
17-2. The method
17-3. Stiffness and carry-over factor
17-4. Maxwell’s reciprocal law
17-5. Analysis of frames by column analogy method
17-6. Analysis of gable frames
17-7. Analysis of unsymmetrical frames
Examples XVII

Chapter 18 THE ELASTIC CENTRE
18-1. Introductory
18-2. The fixed-base portal frame
18-3. The elastic centre
18-4. Fixed arches
18-5. Circular arch
18-6. Two-hinged arches
Examples XVIII

Chapter 19 THE RECIPROCAL THEOREM
19-1. Introductory
19-2. The reciprocal theorem
19-3. Influence coefficients
19-4. Proof
19-5. Models
Examples XIX

Chapter 20 PLASTIC THEORY
20-1. Limit design: Load factor
20-2. Plastic bending: Plastic hinge: Shape factor
20-3. Simply supported beams
20-4. Propped cantilevers
20-5. Encastré beams
20-6. Design of beams
20-7. Continuous beams
20-8. Portal frames
20-9. Analytical methods: Virtual work
20-10. Combined bending and axial load
Examples XX

Chapter 21 INTRODUCTION TO MATRIX METHODS OF
ANALYSIS
21-1. Actions and displacements
21-2. Equilibrium and compatibility
21-3. Static and kinematic indeterminacy
21-4. Structural mobilities
21-5. Flexibility and stiffness
21-6. General case
21-7. Closure

Index