This book presents the basic principles involved in analysis and design in the field of Geotechnical and Foundation Engineering written in a simple manner. The subject matter is characterized by comprehensive as well as methodical, easy-to-follow style and canvassed along with theory, variety of examples and useful tables. Each topic of the book has been arranged in such a way that reader is empowered with an in-depth knowledge of the subject. Latest Codes of Indian Standards have been applied for solving the problems.

The outline of the book is as mentioned below:

1. INTRODUCTION
2. BASIC TERMINOLOGY AND INTERRELATIONS
3. INDEX PROPERTIES OF SOILS AND CLASSIFICATION TESTS
4. CLASSIFICATION OF SOILS
5. CLAY MINERALOGY AND SOIL STRUCTURES
6. EFFECTIVE STRESS, CAPILLARITY AND PERMEABILITY
7. SEEPAGE THROUGH SOILS
8. STRESS DISTRIBUTION IN SOILS DUE TO SURFACE LOADS
9. SOIL COMPACTION
10. SHEAR STRENGTH OF SOILS
11. ARCHING IN SOILS AND BRACED CUTS
12. LATERAL EARTH PRESSURE
13. STABILITY OF SLOPES
14. COMPRESSIBILITY OF SOILS AND CONSOLIDATION
15. SHALLOW FOUNDATIONS AND BEARING CAPACITY
16. PILE FOUNDATION
17. WELL FOUNDATIONS
18. FLEXIBLE RETAINING STRUCTURES AND COFFERDAMS
19. GEOSYNTHETICS: APPLICATION AND DESIGN
20. LABORATORY EXPERIMENTS AND FIELD EQUIPMENT

Salient features of the book:
- 384 Neatly drawn self explanatory sketches
- 135 Useful tables
- 165 Typical solved examples
- 151 Questions at the end of the chapters
- 19 Laboratory experiments.

The book in the present form will prove to be extremely useful to the students preparing for the Degree examinations in Civil Engineering and Architecture of all the Indian Universities, Diploma examinations conducted by various Boards of Technical Education, Certificate Courses as well as for the A.M.I.E., U.P.S.C., G.A.T.E., I.E.S., and other similar competitive and professional examinations. It should also be an immense use to practicing Civil Engineers.
GEOTECHNICAL AND FOUNDATION ENGINEERING
DETAILED CONTENTS

CHAPTER 1 INTRODUCTION
1-1. Geotechnical engineering
1-2. History of Development
1-3. Field of geotechnical Engineering
1-4. Soil formation and soil types
Transported soils are further classified according to the
transporting agency and method of deposition
Some of the typical soils that
we come across are as follows

Exercises 1

CHAPTER 2 BASIC TERMINOLOGY AND INTERRELATIONS
2-1. Soil Mass
2-2. Soil Mass as Three phase System
2-3. Soil Mass as two Phase System
2-4. Basic Terms and Definitions
(1) Void ratio, \(e \)
(2) Porosity, \(n \)
(3) Degree of saturation, \(s_r \)
(4) Air content, \(a_c \)
(5) Percentage air voids, \(n_a \)
2-5. Water content, \(w \)
2-6. Unit weight and densities
(1) Unit weight of water, \(\gamma_w \)
(2) Bulk/total unit weight, \(\gamma_t \)
(3) Dry unit weight, \(\gamma_d \)
(4) Saturated unit weight, \(\gamma_s \)
(5) Submerged unit weight, \(\gamma' \)
(6) Unit weight of soil solid, \(\gamma_s' \)
2-7. Specific gravity, \(G \)
(1) Specific gravity of soil particles
(2) Specific gravity of soil mass, \(G_m \)
2-8. Functional Relationship
(1) Relation between \(e \) and \(n \)
(2) Relation between \(e \), \(S_p \), \(w \) and \(G \)
(3) Relation between \(\gamma_t \), \(\gamma_d \) and \(\gamma_s \)
(4) Expression for \(\gamma_t \), \(\gamma_d \) and \(\gamma' \)
(5) Expression for \(\gamma_s \) in
terms of \(n_a \), \(G \), \(\gamma_o \) and \(w \)
2-9. Typical examples based on three phase diagram

Exercises 2

CHAPTER 3 INDEX PROPERTIES OF SOILS AND CLASSIFICATION TESTS
3-1. Introduction
3-2. Specific Gravity
3-3. Water Content
(1) Oven-drying method
(2) Pycnometer method
(3) Rapid method
3-4. Size and Shape of Soil Particles
3-4-1. Sieve Analysis
3-4-2. Sedimentation Analysis/
Wet-Mechanical Analysis
3-5. Consistency Of Clays: Atterberg Limits
3-6. Significance of other Soil Aggregate Properties
(1) Permeability
(2) Unconfined compressive strength
(3) Sensitivity and thixotropy
(4) Void ratio, porosity, unit weight
(5) Relative density or density index
(6) Activity of soils
(7) Specific surface
(8) Collapsible soil

Exercises 3

CHAPTER 4 CLASSIFICATION OF SOILS
4-1. Introduction
4-2. Unified Soil Classification System (USCS)
(1) Coarse grained soils
(2) Fine grained soils

Exercises 4

CHAPTER 5 CLAY MINERALOGY AND SOIL STRUCTURES
5-1. Introduction
5-2. Clay minerals
5-2-1. Atomic bonds
(1) Primary valence bonds or ionic bonds
(2) Secondary valence bonds
5-2-2. Structure of clay minerals
(1) Tetrahedral or silica sheet
(2) Octahedral or alumina sheet
5-2-3. Isomorphous Substitution
(1) Kaolinite
(2) Montmorillonite
(3) Illite
5-3. Clay - water relations
(1) Adsorbed water
(2) Base (cation) exchange capacity
5-4. Clay particle interaction
5-5. Soil structure and fabric
5-6. Granular soil fabric

Exercises 5

References 5

CHAPTER 6 EFFECTIVE STRESS, CAPILLARITY AND PERMEABILITY
6-1. Introduction
6-2. Principle of effective stress
6-3. Physical meaning of effective stress
6-4. Capillarity in soils
6-5. Permeability of soils
(1) Basic concept of fluid flow — Darcy’s law
(2) Measurement of permeability
6-6. Factors affecting permeability
(1) Factors affecting permeability
(2) Permeability of stratified soils
6-7. Types of head, seepage forces and
quick sand condition
(1) Hydrodynamic case — flow condition
(2) Hydrostatic case (No flow condition)
(3) Downward flow
(4) Upward flow (fig. 6-17)
(5) Quick sand condition
6-8. Typical examples on effective stress, capillarity and
permeability

Exercises 6

CHAPTER 7 SEEPAGE THROUGH SOILS
7-1. Introduction
7-2. Two–Dimensional Flow — Laplace’s Equation
7-3. Flow nets
7-4. Properties and uses of a Flow Net
(1) Seepage calculation
(2) Uplift pressure
(3) Exit gradient and piping
(4) Pore – Water pressure
(5) Methods for obtaining flow nets
7-5. Unconfined flow
7-6. Seepage in anisotropic conditions
7-7. Flow through non-homogeneous sections
7-8. Prevention of erosion — protective filters
7-9. Typical examples of seepage through soils

Exercises 7

References 7
CHAPTER 8 STRESS DISTRIBUTION IN SOILS DUE TO SURFACE LOADS

8-1. Introduction
8-2. Bousinesq’s Equation
8-3. Vertical Stress Distribution Diagram
 (1) Vertical stress isobar diagram
 (2) Vertical stress distribution on a horizontal plane (Fig. 8-2)
 (3) Vertical stress distribution on a vertical line (Fig. 8-2)
8-4. Vertical Stress Beneath Loaded Areas
 (1) Line load
 (2) Strip load
 (3) Uniformly loaded circular area
 (4) Uniformly loaded rectangular area
 (5) Long embankment loading
 (6) Uniform load on an annular area (Ring foundation)
8-5. Influence Chart (Newmark’s Chart)
8-6. Approximate Stress Distribution Methods for Loaded Area
 (1) Equivalent point load method
 (2) Two to one method
8-7. Westergaard’s Equation
8-8. Typical examples of Vertical stresses below applied loads
8-9. Contact Pressure
8-10. Typical example on stress distribution in soils due to surface loads

Exercises 8

CHAPTER 9 SOIL COMPACTION

9-1. Introduction
9-2. Laboratory tests
9-3. Factors AFFECTING compaction
 (1) Water content
 (2) Type of soil
 (3) Method of compaction
 (4) Compactive effort
 (5) Use of admixture
9-4. Structure and engineering behaviour of compacted cohesive soils
 (1) Structure
 (2) Permeability
 (3) Compressibility
 (4) Swelling
 (5) Shrinkage
 (6) Stress-strain relationship
 (7) Pore water pressure
9-5. Compaction in the Field
9-6. Compaction Specifications and Field Control
9-7. Typical examples of soil compaction

Exercises 9

CHAPTER 10 SHEAR STRENGTH OF SOILS

10-1. Introduction
10-2. Stress At point – mohr’s circle of stress
10-3. Mechanism of shear resistance
10-4. Mohr-coulomb’s failure criterion
 (1) Concept of failure in soils
 (2) Mohr’s failure criterion and Mohr’s failure hypothesis
 (3) Coulomb’s equation and Mohr-Coulomb’s criterion
10-5. Measurement of shear strength
 (1) Direct shear test
 (2) Triaxial Test
 (3) Unconfined compression test
 (4) Vane shear test
 (5) Special shear test
10-6. Shear strength of clayey soils
 (1) Untrained strength from UU Test
 (2) Consolidated undrained strength from \(\sigma' \) test
 (3) Consolidated drained strength test
 (4) Shear strength – a unique function of effective stress
 (5) Comparison of the results of \(\sigma' \) and CD tests
 (6) Stress-strain and volume change relationships
 (7) Effect of strain rate
10-7. Shear strength of sands
 (1) Behaviour of saturated sands under undrained conditions
 (2) Factor affecting angle of shearing resistance
 (3) Angle of repose
 (4) Effect of moisture
 (5) Effect of intermediate principal stress
10-8. Drainage conditions and strength parameters
10-9. Stress paths
10-10. Pore pressure parameters
10-11. Elastic properties of soil
 (1) Modulus of elasticity
 (2) Poisson’s ratio, \(\mu \)
 (3) Shear modulus, \(G \)
10-12. Typical Examples of shear strength of soils

Exercises 10

CHAPTER 11 ARCHING IN SOILS AND BRACED CUTS

11-1. Cain’s theory
11-2. Tunnels through sand
11-3. Braced excavations
11-4. Braced excavations
11-5. Earth pressure against bracing in cuts
11-6. Heave of the bottom of cut in soft clays
11-7. Strut loads
11-8. Deep cuts — apparent earth pressure diagram
11-9. Typical examples of Vertical stresses below applied loads

Exercises 11

CHAPTER 12 LATERAL EARTH PRESSURE

12-1. Introduction
12-2. Types of lateral earth pressure
12-3. Earth pressure at rest
12-4. Earth pressure theories
12-5. Rankine’s theory
12-5-1. Plastic equilibrium of soil — Active and passive rankine states
12-5-2. Active earth pressure of cohesionless soil
12-5-3. Passive earth pressure of cohesionless soil
12-6. Coulomb’s earth pressure theory or coulomb’s Wedge theory
12-6-1. Active state
12-6-2. Passive state
12-7. culmann’s graphical method for active pressure for cohesionless soil
12-8. rebhann’s graphical method for active thrust
12-9. Active earth pressure of cohesive soils (Rankine’s theory)
12-10. Passive earth pressure: Rankine’s theory
 (1) Cohesionless backfill
 (2) Cohesive backfill
 (3) Sloping backfill
12-11. Typical problems of lateral earth pressure

Exercises 12

CHAPTER 13 STABILITY OF SLOPES

13-1. Introduction
13-2. Stability analysis of infinite slopes in sand (Cohesionless soil)
13-3. Stability Analysis of Infinite slopes made of clay
13-4. Factor of safety
13-5. Stability Analysis of Finite slopes
13-6. The Swedish slip circle method (Fig. 13-8)
 (1) \(\phi u = 0^\circ \) analysis
 (2) c-\(\phi \) analysis or method of slices
13-7. Method of locating critical slip circle (Fig. 13-12)
13-8. Stability of side slopes of Earth dam
 (1) Stability of down stream slope during steady seepage
 (2) Stability of up stream slope during sudden draw down
 (3) Stability of slopes immediately after construction
13-9. Friction circle method
13-10. Stability Analysis of a finite slope using Taylor stability number
13-12. Typical examples of stability of slope (S.O.S.)

Exercises 13
CHAPTER 14 COMPRESSIBILITY OF SOILS AND CONSOLIDATION

14-1. Introduction

14-2. The consolidation process: spring analogy

14-3. Consolidation of laterally confined soil
 (1) Skempton (1944)
 (2) Houge (1957)

14-4. Consolidation settlements, S_c

14-5. Soil condition with regard to its consolidation
 (1) Normally consolidated (N.C.) soils
 (2) Over consolidated/pre-consolidated (O.C.) soils
 (3) Under consolidated (U.C.) soils

14-6. Determination of pre-consolidation or over consolidation pressure, σ'

14-7. Terzaghi’s theory of one-dimensional consolidation

14-8. Solution of the consolidation equation

14-9. Laboratory one dimensional consolidation test

14-10. Calculation of void ratio

14-10-1. Height of solid method

14-10-2. Change in void ratio method (Table 14-5)

14-11. Coefficient of volume change (m_v)

14-12. Compression index (C_v)

14-13. Determination of coefficient of consolidation (C_s)

14-13-1. Square root of time fitting method

14-13-2. Logarithm of time fitting method

14-14. Determination of coefficient of permeability (k)

14-15. Secondary consolidation

14-16. Typical solved examples of compressibility of soils and consolidation

Exercises 14

CHAPTER 15 SHALLOW FOUNDATIONS AND BEARING CAPACITY

15-1. Introduction
 (1) Strip footing or continuous footing
 (2) Spread footing
 (3) Raft or mat foundation

15-2. General requirement of foundations
 (1) Shear failure criterion
 (2) Settlement criterion
 (3) Location and depth criterion

15-3. Terminology

15-4. Allowable Bearing Pressure for Safe Design

15-5. Bearing Capacity of Shallow Foundations
 (1) General shear failure (GSF)
 (2) Local shear failure (LSF)
 (3) Punching shear failure (PSF)

15-6. Terzaghi’s Bearing Capacity Theory
 (1) Assumptions
 (2) Local shear failure
 (3) Effect of shapes
 (4) Effect of water-table
 (5) Skempton’s bearing capacity analysis for clayey soils
 (6) Meyerhof’s analysis
 (7) Hansen’s recommendations
 (8) Vesic’s bearing capacity factor
 (9) IS code recommendation for bearing capacity
 (10) Two layered system
 (11) Desiccated soil
 (12) Bearing capacity of cohesionless soils based on standard penetration test

For strip footings
 For square and circular footings

(13) Bearing capacity of cohesionless soils from static cone resistance

(14) Bearing capacity of footings on layered soils

(15) Factors affecting bearing capacity

(16) Presumptive bearing capacity

15-7. Settlement of Shallow Foundations
 (1) Components of settlement
 (2) Immediate or elastic settlement

Corrections to settlement due to consolidation
 (3) Seat of settlement

(4) Settlement of foundations on granular soils

(5) Method based on static cone penetration test

(6) Allowable settlement

15-8. Allowable Bearing Pressure
 (1) Granular soils
 (2) Cohesive soils

15-9. Steps Involved in Proportioning of Footings

15-10. Typical Examples on Shallow Foundations and Bearing Capacity

Exercises 15

CHAPTER 16 PILE FOUNDATION

16-1. Introduction

16-2. Load transfer mechanism

16-3. Types of pile

16-3-1. Classification based on material and composition

16-3-2. Classification based on method of installation
 (1) Driven piles
 (2) Cast-in-situ piles
 (3) Driven and Cast-in-situ piles

16-3-3. Classification based on load transfer mechanism
 (1) End-bearing piles
 (2) Friction piles
 (3) Tension or uplift piles
 (4) Compaction piles
 (5) Anchor piles

16-4. Piles subjected to vertical loads

16-4-1. Pile load carrying capacity based on static formula
 (2) For non cohesive soil
 Piles in stratified soil

16-4-2. Pile load carrying capacity based on Dynamic formulae
 (1) Engineering news formula
 (2) Hiley’s formula

16-4-3. Pile loads carrying capacity based on penetration test data

16-4-3-1. Pile load carrying capacity based on standard penetration test N
 (1) Piles in granular soils
 (2) Piles in cohesive soils

16-4-3-2. Pile capacity based on static cone penetration test (SCPT) or cone penetration test (CPT)
 (1) Van Der Veen’s method for piles in cohesionless soil (1957)
 (2) Schmertmann’s method for cohesionless and cohesive soils

16-4-4. Pile load test

16-5. Group action in piles

16-5-1. Efficiency of the pile group

16-5-2. Design of Pile Groups Pile group in cohesive soil bed

16-6. Negative skin friction

16-7. Settlement of pile and pile group
 (1) Settlement of single pile embedded in sand
 (2) Settlement of single pile embedded in clay

16-7-1. Settlement of pile group is sand
 (3) Settlement of pile group is sand

16-7-2. Settlement of pile groups in clay

16-8. Typical examples on pile foundation

16-8-1. Examples based on static formulae

16-8-2. Example based on dynamic formulae

16-8-3. Example based on penetration test data

16-9. Laterally loaded piles

16-10. Laterally loaded long piles embedded in cohesive soils

16-11. Ultimate lateral load analysis:
 (1) Short pile (embedded in sand) [Fig. 16-30(a)]
 (2) Short pile (embedded in clay) [Fig. 16-30(b)]

16-12. Allowable Lateral deflection of a pile
CHAPTER 16 IS Code Method:
16-13. Lateral load carrying capacity of a pile
 (1) For sand and normally consolidated clays
 (2) For Preloaded clays or over consolidated clays with constant soil modulus
 (3) Calculation of deflection and moment in a long elastic pile
 (4) Calculation of moment

16-14. Under-Reamed Pile
16-15. Load test on Under-reamed piles
16-16. Cyclic pile load test
16-17. Difference In Fixed Head And Free Head Pile

Chapter 16 Exercises 16

CHAPTER 17 WELL FOUNDATIONS
17-1. Introduction
17-2. Various Types of Wells or Caissons
 (1) Open caissons or well
 (2) Box caissons
 (3) Pneumatic caissons
17-3. Components of a Well Foundation
 (1) Well-cap
 (5) Bottom plug
 (2) Steining
 (6) Dredge hole
 (3) Curb
 (7) Top plug
 (4) Cutting edge
17-4. Requirement of Shapes of Wells
17-5. Depth of A Well Foundation
 (1) Minimum grip length below the scour depth
 (2) Base pressure within permissible limits
17-6. Forces Acting on a Well
17-7. Lateral Stability of Well Foundation
 (1) Terzaghi’s analysis
 (2) IRC method
 (3) Elastic theory method
 (4) Conditions of stability
 (5) Ultimate soil resistance method
 Base resisting moment, M_b
 Side resisting moment, M_s
 Friction resisting moment, M_f
17-8. Lateral Stability of a Heavy well
17-9. Sinking of a Well
 (1) Controlled dredging
 (2) Eccentric loading
 (3) Pulling the well
 (4) Pushing the well
 (5) Water jetting and/or digging pit on the higher side
 (6) Obstacles below the cutting edge and loading
17-10. Bearing capacity of a well

Chapter 17 Exercises 17

CHAPTER 18 FLEXIBLE RETAINING Structures AND COFFERDAMS
18-1. Introduction
18-2. Cantilever sheet pile wall
18-2-1. Cantilever sheet pile in granular soil
 Assumption
18-2-2. Cantilever sheet pile in granular soils — An Approximate Analysis
18-2-3. Cantilever sheet pile in cohesive soil ($
\phi_u = 0$ Condition)
18-3. Anchored bulkhead
18-3-1. Free-earth support method
18-3-2. Fixed earth support method
 Fixed earth support method for designing the anchored bulkheads
18-4. Cofferdams
 (1) Earth embankments
 (2) Cantilever sheet pile
 (3) Double wall cofferdams [Fig. 18-8(c)]
 (4) Braced cofferdams
 (5) Cellular cofferdams [Fig. 18-8(e)]
18-5. Typical Examples on flexible retaining structures and cofferdams

Chapter 18 Exercises 18

CHAPTER 19 GEOSYNTHETICS: APPLICATION AND DESIGN
19-1. Introduction
19-2. Types of Geosynthetic materials
19-2-1. Geotextile (GT)
 (1) Woven geotextiles
 (2) Nonwoven geotextiles
19-2-2. Geogrid (GG)
 (1) Integral junction geogrids
 (2) Fused junction geogrids
 (3) Woven junction geogrids
19-2-3. Geonets (GN)
19-2-4. Geomembrane (GM)
19-2-5. Geosynthetic clay liner (GCL)
19-2-6. Geofoam 487
19-2-7. Geocell 487
19-2-8. Geocomposites
19-3. Geosynthetics functions
 (1) Separation
 (2) Reinforcement
 (3) Filtration
 (4) Drainage
 (5) Moisture barrier/containment
 (6) Protection
 (7) Stiffening
19-4. Application of geosynthetics and controlling functions
19-5. Testing and evaluation of geosynthetics
19-6. Geosynthetic properties and parameters
 (1) Physical properties of geosynthetics
 (2) Mechanical properties of geosynthetics
19-7. Reinforced earth wall (R.E. wall)
19-7-1. Advantages of R.E. walls
19-7-2. Analysis and Design of R.E. walls

Chapter 19 Exercises 19

CHAPTER 20 LABORATORY EXPERIMENTS AND FIELD EQUIPMENT
20-1. Laboratory experiments
20-2. Field Equipment used in geotechnical practices
 (1) Tipper trucks (Fig. 20-2)
 (2) Dump trucks (Fig. 20-3 and fig. 20-4)
 (3) Concrete trucks/Transit mixers (Fig. 20-5)
 (4) Crawler cranes for pile driving work (Fig. 20-6, fig. 20-7 and fig. 20-8)
 (6) Excavators (Fig. 20-9)
 (7) Backhoe loaders (Fig. 20-10)
 (8) Graders (Fig. 20-11)
 (9) Skid steer loaders (Fig. 20-12)

Appendix A
INDEX